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In this paper we shall consider an n-dimensional space ¥, with dominant affine
connection, in which the quantities /"5, determing the relation between tangent spaces
attaching to every point are given. However in this case the tangent spaces of ¥, are
m{> n)-dimensional affine spaces. We call ['%; the coefficients of dominant affine con-
nection.

§ 1. Consider an n-dimensional space ¥, with dominant affine connection where a
current point g is given by a system of coordinates («', %%,--+,4") and linearly independent
m vectors £y which compose a frame of a tangent space attaching to this point ¢ are given.

Then these vectors satisfy the equations
{1.1) dr.= 1", 1, dx'.

Let r; be the linearly independent n vectors satisfying the equations
{1.2) dr=1y, dx;.

Being the vectors on m-dimensional affine space 4, t; must satisfy
(1.3) Li=B" L,
and contravariant vectors v* on 4, can be written
(1.4) V*=B;*v,

from which we see the quantities B;* are n contravariant vectors.

Let tp be m —n linearly independent vectors of t;, and 4,,_, be an (m —n)-dimensional
subspace of 4, then we define B;* by the equations

(1.5) tp=Bp" La.
We find similarly
(1.4) Vr=Bpro®

where v” is a vector on 4,,_,, and B;" are p contravariant vectors.

The rank of the matrix

(1) In this paper we shall denote by @, 8,7,A,1,v,...the suffices which take the value 1, 2,...,m; by a,5,¢,
wsey Lyfyeey 1, those which take the yalue 1,2,...,7,and P,Q,R,S, those which take the value in+1,724-2,-..,m,
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15;-A
is m, then we have the inverse matrix
B,
from which we see the relations
(1.6) Bi\ Bi*=8i, B!,B;*=0, BX,Bi*=0, BY,B,*=8}
Bi*Bi,+Bp*BY ,=3).
For the displacement on ¥, we put
(1.7) dr; =% dx'gs + Hi jdx’tp,

on the other hand we see
di=[B;";+BiF I'§;]tadx’,
where comma means partial derivative, and comparing with (1.7) we obtain

oB;*

(1.8) = —I'g;B#+7%Bi®+ HE By®.
Similarly, putting

(1.9) de=Hp do’ g+ HE jdo'i,

we obtain

(1.10) a,(fgf’,.“ = — I'4; B+ H, Bi*+ HY,; By

Now consider the transformation of coordinate
x/i:x/i(xf’xé’ _— x';)
and change of the frame
=AYt

where the rank of the matrix (43) is m and (4}, is the inverse matrix of (43). Then
from (1.8), (1.5), B;* and B are transformed by the laws

A7 ox'

N g 0%
(1.11) B =4 2%

A . N AT A
B:%, Bp :A,\BP-
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Moreover, the transformation law of a composite tensor, that is to say, the tensor
which may involve Latin and Greak indices, is®

(1.12) Tognin =T gk Ay - AR %ixi g—f ,
and hence B;*is a composite tensor.
Comparing
dto= % 8adx,
with di o= d(A45s),
we obtain
(1.13) %= AB(A% T+ A2, i)%

On the other hand, considering the case where we do not change the vector frame, we see

ol
%’

ozt

%"

dgi,: [:")’I::J, B;cw + Hf/j/ Bi)w]gw dx’.

Here, differentiating the relation g, = %Zia and comparing with the above equa-
X

tion give
. Oxk G ox° Ox!
1.14 A AN A ko _OX  OX
( ) z ] axkl ax"ax]’ +(yla] axz/ ax]/,
ox' Oxf
HfIJ/: HP

How D
Also from (1.10) we obtain

. Ox™ Oxl”
Pim =T
T ox® Ol

(1.15) HE =

§ 2. From the integrability conditions of the equations (1.8) we obtain
2.1) RYBiP =R, Bi®+ [HbHE  — H HY () B
+ (v HY o —v3HE ) + (HE oo — HY v+ H Ho — HY W Ho;) 1B %,
where the quantity Rg;. is a curvature tensor of 7, i.e.
2.2) Rejpp= g2 — I'tnj+ g g — 5l gjs

and R} is a curvature tensor for v, i.c.

(2) A.D. Michal and J. L. Botsfold ; Geometries involving affine connections and general linear connec-
tions. An extension of the recent Einstein-Mayer geometry. Annali di mat. 12 (1934) p. p. 13~32.
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2.3) Rlp= e — Y+ vy — il
In the same manner, from (1.10) we obtain
2.4) 8B =HE.; —H$;. .+ HE; ng_"H}Isj-hrgi+HIZ’iH?j_H§;jHI?i]B(‘)w
+[Hll°i,j—H;Jj,i+Hllc>i ')’zlcj“ llf’j Yii+HE; Hé)j_HIO’j Héi]B}“.

I

Covariant derivative of the composite tensor 7.5 is given from

(1.12) and (1.14) by

(2.5) T BTE# o DT e ey T A
— Tt — e —yhog —
Especially
2.6) BN =B+ Bj* I'ni—Bi*vjx=H;j « Bp",
and
@.7) Vy=DB; %!+ H; Bp*vl,

where we put V*=B; v'®.

For the extension of Ricci equation we obtain
(2.8) Toaer. o —TiEsr o
=+ RY; Topgr 4+ Ry Tigis + -
—Rpyy Trgugr — oo — Rpyy TIgufn— e,
§ 3. In the space connected dominantly with the given functions /; whose trasforma-
tion laws are given by the relations (1.13), when we determine the quantities B;*and

B;* from the relations (1.13) and (1.15), we may determine four kinds of the quantities
vk, HE;, Hy; and Hp; from the relations (1.8) and (1.10)

oB;®

(3.1 V=Bl + I

(3.2) H,=B" %B] +I'%BiPB .,

(3.3) Hy; =B D8 4 1,87, B,
X

(3.4) Hyy=B1. 2% + I'y; Bla Bi.

Conversely, from (1.8) and (1.10) we obtain

(3) K. Yano: Sur la theorie der espace a hyperconnection euclidienn. I. et II; Proc. Jap. Acad (21)
(1945) p. p. 156~163 et p.p.164~170.
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s (] - '] o aB'w

. . oB
+[')’]ijkw+Hfj Bp®— D)

Therefore, when we take arbitralily 7%, H:; and Hf;, Hp; that may satisfy the
transformation laws (1.14) and (1.15) respectively, and determine the quantities ['g; from
the relations (8.5), we see the quantities satisfy the transformation law (1,13) from (1,11),
(1,14) and (1.15), that is,

BB ; OBy

!’

By =BV B+ iy By — T ) + By (HE By + Hyjo B )

i i i ,Aw'
=R AB/?_A_G__‘ [(ﬂ +'yk~ailx]>Bw qv a<Bk O >a i
BB Ox L\ ow ox!” Y ont oxl) Pk e ot Dw?’ ]

P 48[ rr0 Ox/ L ox’ ax , O(Bp® AY) O’
+Bs B’[H”féFB" A+ Heim 5 B 5 "Aw o/ axf’]

, D!
_Aza 5

IEJ' +Am/,]']-

Hence, when on each point of an n-dimensional space V, we give the vector field B;* Bp"

and the quantities v%;, H:; and Hp;, Hp; which satisfy respectively the transformation laws (1.14)
and (1.15), then we may determine cogﬁcients of dominant affine connection which satisfy the rela-
tions (3.5).
Moreover for the curvature tensor, similarly from (2.1), (2.4) and (1.16), we obtain
(3.6) 8is=DBlg Bi® [Rlj.+ Hp HP — Hp i HF it]
+Blg By® [HLJ B H?k]—l—Hf]H kang‘*“'ngH?k—"Ykalle]
+BP B;® [ Pjk— Hé’k,j'!‘HPj 'sz—Hf’k 'Y}Zj-{-ngHfgk—Hng}éj]
+BEsBy® [HY; 1 — HE, ; + HE; HY, — HE HS, + Hp HY — Hp HY 7,
and this is equivalent to (2.1) and (2.4).

§ 4. In this paragraph we shall consider a necessary and sufficient condition that a
dominantly affinly connected space be a sub-variety of an affinely connected space.

Consider an m-dimensional space V,, with affine connection where a current point
A is given by a system of coordinates (y', ¥%, ---, ¥™), and the connection is given by the
following equations;

(4.1) dA=A.dy", dAy=1I"8, Ag dy”.

In ¥,, we consider an n-dimensional variety ¥, defined by the equations

(4_.2) yw:ym(xi, xz',...,xﬁ)
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when current point 4 displaces on ¥, we have

(4.3) dA=A, B;* dx’
where
nea 8}/“
4.9 | Bi=,
If we define
(4.5) A=A, Bi®, Ap=A, Bp*

where B3® are m—n contravariant vectors and the determinant |B;% Bp*| is not equal
to zero, we see A;, Ap are m-linearly independent vectors of V. For the displacement
on V, we see

4.1) dA=Adx’

and we put

(4.6) dd:= (7% + H} jAp)da’,
“.7) dAp=(Hp; Ar+Hp; Ag)dx’.

Differentiating (4.5) and comparing with (4.6), (4.7), we obtain

4.8) 9Bi® _ _ s Bi*Bi* 4k, Bi*+ HY, B;®
( .0) axj - Putri £2j +'Yr.] P ij PP o
(4.9) OBi” _ _ I'e.Bi B+ HE B+ HE By

. ax] = app Dj PiDg PioQ -

As the quanty B;* defined by the equations (4.4) must satisfy the integrability
20,0 2,0

conditions of the equations 8?\:%96 T a‘iéx* we obtain
(4.10) ByB(I'8,— I'*)=Bi*(v%;— %) + Bp*(H ;— HY ).

Moreover from the integrability conditions of the system of epuations (4.8) and
(4.9), we obtain®
(4.11) B;*B;j* Bi¥ R%.uy=Bi*(Rl+ HiHp;— Hi:Hp ;)
+Bp(HE o~ Hix j+ HY ) Hoo— H Ho; + 0 Hp — v 1HE ),
(4.12)  Bi*B;* Bi* Rwy=Bi*(Hpj,.— Hpw, -+ HE; How— HEw Hpj -+ Hpj Vi — Hpe ij)
+ By*(HE,, o — H3;+ HE; H— HEw HY +Hb; Hf— Hb HY).

In the present case the quantities /'§; are given (i.e. the quantities B;®, Bp®, HY v,

(4) M. Matsurioto; Affinely connected spaces of class one.
Mem. of Colleg. of Science. Univ. of Kyoto. Vol. 26. (1951) p. p. 235~249.
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HG; and H}; are given), that is to say, considering space ¥, is a space with dominant
affine connections, and we should like to determine the quantities /'3y which are the
coefficients of affine connection of enveloping space V,. Obviously ¥* (the ccordinate
system of V,,) must satisfy the relations

(4.13) Bi*= QL:”
o',

and on V,

(4.14) dy®=B;" dx’,

then we obtain
(4.15) F§i=1—,§m B;w.

Hence,these functions /75, must satisfy firstly the transformation laws of coefficients
of connection, secondly the equations (4.14), i.e., the integrability conditions of system
of equations (4.13), and finaly (4.11) and (4.12), i.e., the integrability conditions of (4.8)
and (4.9).

When these three sorts of conditions are satisfied, we may defin (y', ¥%---,y™) which
are the solutions of the system of equations

L7

Bi=

- ox',
and find the m-dimensional space ¥, with coefficients ofaffine connection I'§; which has
a system of coordinate y* defined above and the considering space V, as an n-dimensional
sub-variety.
Coénsequently three sorts of conditions are the necessary and sufficient conditions
that the space ¥, can be embedded in an m-dimensional affinely connected space as an

n~dimensional variety.
From (4.15) we must put
(4.16) I'%,=B:, I't;+BY, I'%p,

where the quantities /'{p are arbitraty functions of «°.
Now we consider the transformation of coordinates y* and «', then I'§; are transfor-
med by the relations

T80 AG (A% TH+ 48, 2%
ox",
where we must put
w/
(4.17) %y;; =4z,
So we see B I'Y o=AR(AS Bi*[ 5.+ A5.) a—axp‘f;
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and from (4.13) B _gy“ — 4% B o

From these equations we obtain

B’ B Dyt By -
418 Pm/ ’__8)/ 7 Fg y,_y—/
N s [9y‘”'8y gy 9y‘”J,

that is to say, the quantities /¥, defined by (4.16) satisfy the transformation laws of the
coeflicients of affine connection. Hence we see that the first conditions are satisfied by
the equations (4.13), (4.14) and (4.15).

Next, we consider the second conditions, while these conditions are the relations
{4.10).

On the other hand from the relation

2 s 1 o
[')\,quM: Ajs

we obtain
(4.19) Bt (B> %j—B}*Pfi)=“/'ff“Vfi’
(4.20) BY (B, —BAIt)=H: j—

Finally the last conditions are the equations (4.11) and (4.12). While the relations
(2.1) and (2.4) must be satisfied in V,, the equations (4.11) and (4.12) are identically
satisfied when the relations (4.13) are satisfied since we can obtain

(4.21) R§;1=R3.. B;* Bi*
For (4,21) from (4,13) we see B;* ,=B;* ;,
then Rep= 18— L+ 15 I'g;— I'gnl g
= [Bur Bi* By — I'gr,u Bi" Bi* + I'3(Bj* 1 — Bi*. )
+ B BN [gn—T'ox I'gu)
=R§..B;"B; .
Consequently the relations (4.11) and (4.12) are equivalent in consequences of (2.1)
and (2.4) respectively, that is to say, in consequences of (3.6).
A necessary and sufficient condition that an n-dimensional space with dominant affine connec-

tions be an n-dimensional variety of an m-dimensional space with affine connection is that the rela-
tions (4.19), (4.20) and (3.6) be satisfied.
§ 5. In this paragraph we consider the case where v} are equal to vi;. While on a

space with symmetric affine connection the equations of geodesic lines are

8 (dit
_d_t/):
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&P dxl da*

that is to say, )
atstosay ds® +%de ds

where s is affine parameter.
Now in the space V, with dominant affine connection when we put

dx

[ A
(5.1) =

A
st

the condition that a curve x'=x(s) is developed into a straight line when we develop Va
in an m-dimensional affine space along this curve is written

8

F i A\
(5.2) 75 rH=0

p dxlda"\p.x <d_£ J dijd_x_>3 -
LIRS < ik s ds)B g T s s

Consequently we obtoin

d*xt s dod dx®

(5.3) d—sz+7jkd—s$: »
‘ p duldet
(5.4) H’kds g =0

Then we call the curves which are solutions of the system of equations (5.3) and
(5.4) geodesic line in ¥, and asymptotic line respectively.

If a curve in ¥, can be developed into a straight line in 4, this curve must be geo-
desic and asymptotic line in ¥,. Especially the necessary and sufficient condition that
all geodesic lines in 7, can be developed into straight lines is

(5.5) HE, +HE =0,

While geodesic lines and asymptotic lines are respectively same for two connections
whose coefficients are in the relations

(5.6) ="+ 8 Y+ 8L r;,
(5.7) H]k—pHPk—*'Q

where +Jr; is an arbitrary covariant vector, p is an arbitrary scalar and £ are p arbitrary
skew symmetric tensors. In the equations (3.5) for ['%;, substituting for s and H,
their expressions (5.6) and (5.7) respectively, we obtain

(5.8) Fg]: g]"‘Blpr];w\P]"*“BfBB}w’\ll‘,,‘l‘(p—‘l)BfBBﬁwaJ'F..Qf]BfBB];w.

Conversly in the case where the quantities ['§; and ['§; are connected with the
relation (5.8) we obtain (5.6), (5.7) and

Hoy=Hg;s Ho;=Hy;
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Consequently, the geodesic lines and asymptotic lines are same respectively for two connections
whose coefficients are in the relations (5.8).

We say that the dominant affine connection of coefficients 77§; is obtaind from that
with the cefficients I"§; by a projective change of the dominnat affine connection.

We see from (1.13)

(5.9) Pz,._A,t,gx, (A [0+ A7),

Contracting for » and p we obtain

= ax F" Olog4d

(5.10) b+ 4=,
where
(5.11) A= | AY

On the othef hand from the relation (5.8) contracting for a and 3 we have
1 e ”
(5.12) «p,-:m( ai— 1'%
from which and (5.8) we find that the quantities

(5.13) %= S,-——ﬁh{B’f,aB,;“ A+ B3 BY I} — Bs Bi*HY,

are independent of a profective change of dominant affine connection.
For the relations between the function //}; and the analogous function in a coordi-
nate system x* we find from the relations (5.13), (5.19), (1.11) and (1.14)

ologd 1 B.SBJB'axJ alogd

@ )\’: A'ax - k’/ 8’ @’
(5.14) NI%GAY = Ay 22 [1%,,,+ AY, —BwB Ay B - — e

381

Moreover we find that the quantities

(5.15) Wypn=B;* Big Wij
and
(5.16) “8=Bi*Bis Wi+ B% BL (HE; x— Hfs ;+ Hf; Hf, — HE HS;)

+B%g Bhw(HPj,k—HPk.j +Hp; Vix—Hpy 'Y;ltj""‘Hle Hpw—HEy Hgj)
— LG o B TG+ 8 Y, T 85 T

are independent of a projective change of dominant affine connection, where Wi is so-called Weyl
projective curvature tensor for o ix.



Journal of Gakugei, Tokushima Usiversity
Vol. VII. 1956.

A NOTE ON SUBORDINATION

Hitoshi ABE

(Received September 30, 1956)

1. Introduction The following result is well known as Hurwitz-Bochner’s theorem
[1][2].®

If w=f(z) is regular in |z| <1, f(0)=0, ' (0)=1, and f(z)=0
except z=0, the conformal image of f(z) assumes every value in |w|<1/16. In the present
paper we generalize this theorem and deal with the related problems with it by the
principle of subordination.

As a preliminary remark we shall give a notion of Q(z) whose properties are as
follows [3].

aw=16: 17 (LF2L), dsl<.

Q(z)=J ( logz), where J (z) is the elliptic modular function.

Let the surface M be the conformal image of |z] <1 by Q(z). M has no branch
point. M covers every point of w-plane except w=0,1,00. M does not cover w==1,00, but
the w=0 is covered by one sheet of M only.

2. Lemma 1. [Q(2) | <Q(—n), (|z] =r<1).

Proof. Each factor of infinite products which constitutes Q(z) has its greatest absolute
value on |z|=r only when z= —r, and therefore we have the above estimate clearly.

Lemma 2. Let w=f(z)=aiz+ - , be regular and f(z)3¢0 except z=0 in [z]<1. If
f(2) omits a value o in |z| <1, the following estimates are got.

@) |m|=Z16|al, that is;the conformal image of f(z) assumes every va'ue in |w|<|a:]/16.
(i) A

Proof. Let us consider

—7), (Iz[=r<l)

Po=@(12),

where Q' (w) is the inverse function of Q(z).

f(2) leaves out w=0 except z=01in |z] <1, and therefore P(z) is analytic in 0< |z <L
On the other hand the regularity of P(z) hold good at z=0. Hence f(z)/c is subordinate
to Q(z) and by the principle of subordination we get

(1) The bracket denotes the number of the references.
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la'f(0)[ <Q'(0)
la (D <10 <Q(=n) (Jz]=r<D).

These complete the proof.
Remark. The above estimates are sharp as is shown by f(z)=aQ(z). |«] in the latter
result of this lemma is can not be made smaller than |a,|/16. The former result was
got by the same method by Bochner [1]{3].
Theorem 1. Let w=f(z)=a,z" 4" , be regular and f(2)=F0 except z=0in [z| <1.

() The values taken by w=f(z) cover the circle |w|<la,|/16* p times or more times.

(ii)  The conformal image of the unit circle by w= f(z) cémpletel_y covers the interior of a circle
about the origin whose rudius is |a,|/16. We can state this result in detail, namely,
If w=f(z) omit a value «,

G)) la,| Z16 |

(iii) f@I=Zlal-Q(=r")  ([z]=r<D).
These bounds are best possible.

Proof.

First in order to prove the former result we consider g(z)=(f(z))"/r. Since f(z)3=0
except z== 0 in |z| <1, g(z) is regular and g(z) &= 0 except z= 01in |z| < 1. Hence when
lemma 2 is used with respect to g(z), the proof of (i) will be given.

Secondly we prove the latter results (ii) and (iii). Let us consider

F(2)=Q(zP)=16z7 4 +++--- .

The Riemann surface onto which the unit circle is mapped by F(z) has no branch
point, and covers every point in w-plane infinite times except w=0,1,00. It does not
cover w=1, oo, but w=0 is covered by its p sheets only.

Now we put

Under the samé conditions in the proof of lemma 2, R(z) is regular in 0< |z| <1,
and R(z) is regular at z=0 more. We can get easy

|

Y| = | 20|
B0 = 755
Furthermore R(0)=0, |R(z)| <1.
Hence |R'(0)| <1, thatis, |a,|<16]a].

On the other hand f(z) is subordinate to a F(z) and therefore

HOl = max laFz) | <|a| - Q—r")(|z|=r<1).



A Note on Subordination 49

Theorem 2. Letw=/f(z)=aiz+ """ , be regular and f(z) = 0 except z=01n |z| < 1. If f(2)
leaves out two values o and — «, then :

la | Stlel, |f@IZ]a] QY-

Namely, if w= f(z)=z + - , is an odd regular function in |z| <1 and f(z) =0 except
=0, the values taken by w=f(z) cover fully |w|<1/4. These bounds are best possible.”
Proof. As the superordinate function to f(z)/a we consider

Q1<2)=1/@—_—4z+ ......... .

And then Q,(z) is an odd regular function in |z] <1 and the other properties of |
Q.(z) are quite similar to ones of Q(z) except the fact that it does not assume both 1,

and — 1[2]. Namely Q:1<f—(iz~>> is analytici n |z| <1 like the case of lemma 1 and therefore

we have the forme result of this theorem by the principle of subordination. The latter
result is evident.

We can moreover generalize this theorem, that is,
Theorem. 2. Let w=f(z)=ayz?+ - s be regular in |z| <1, and f(2)30 except z=0.
If f(z) leaves out the values @, and — ., then

la,|Stlal, |f@IS]al-Qd=r7), (lz]=r<D).
Proof. If we consider the superordinate function
QH2P)=dzP o voeeerennnns ,
the results are evident.

Theorem 3. Letw=/f(z)=a,zl+ - » be regular and not zero except z=01n | z| < 1. If f(z)
leaves out the values — 0= wg%, f(z) is subject to the following inequalities.

P
la,| <1, If(zﬂé(r_r_—r;)—z, (lz]=r<1)
These bounds are sharp as is shown by

P

F(z)= (——1 S

Proof. As the superordinate function to f(z) we consider F(z). The Riemann surface
onto whieh the unit circle is mapped by F(z) has no branch point except z=0. Hence
S)=F"(f(=))

is analytic in 0< [z] <1. On the other hand S(z) has regularity at z= 0 whose deriver-
tive has (a,)? there. Moreover S(0)=0 and |S(z)| < 1. Hence we have the above results.

(2) Ifthe condition that f(z)30 except z=0, is omitted, we have the following result, which is well

known [3].
la | =k, k=TI45)/4n>
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We can get the following estimates by means of the same method also.
Theorem 4. If w=f(z)=a,z? + - , 15 regular in |z| <1, leaves out the values — oo
w=< —a, and a Sw=co, (a>0), and vanishes at z=0 only,

0|20, If@ISEEL (lsl=n.

These bounds are best possible as is shown by

3. We consider the case where f(z) is meromorphic in |z| <1.
Theorem 5. Let w= f(z) =aiz+asz® +---- , be an odd meromorphic function in |z| <1 and
()70 except z=0, then the image by this function covers fully the cirle

jw] < l2al

The result is best possible as is shown by

_ 20:(z)
PO=1 oG
Proof. It is clear that fi(z) is an odd meromorphic function and does not take 1 and
—1 b because of the property of Qi(z).
Let us consider

1 _ 1+Q3(2)

FO= 1o~ a-0@r

Then

/ 2(1 + Ql(Z))
because Qi(z)#0 in |z] <1. _
If f(z) leaves out @ and —a, we consider g(z)=f(z)/«. The function (1 —g(2)) ! 1is
subordinate to F(z) because of the proerty of F(z). And therefore

ay

<F'(0)=8

This completes the proof.
Remark. If f(z)=az---- , is meromorphic and vanishes at z=0 only in |z]| <1, f(z)
takes at least one value of each coupl=w belonging to the circl

le<%
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The proof is quite similar if Q(z)(2—Q(z))™" is considered as the superordinate
function.

Here we state the related result with this theorem.
Theorem 6. Let f(z) =ayz+ -+ , be an odd meromorphic function in | z| <1, then the image
by f(z) covers fully the circle

2|a | 7*

l'wl< [14(%)

This result is best possible.
Proof. Like the case in theorem 5 we consider

fila)= ]f_—g%,F(z):QJ[iGizz)]—l.

F(z) leaves out 1 and — 1, but every value except these values is taken infinite
times. Furthermore F'(2)#0 in |z| <1, because J(z) has no branch point [3]. Hereafter
we may do like the proof of theorem 5.
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