ON THE LINEAR PARTIAL DIFFERENTIAL EQUATION OF SECOND ORDER IN N INDEPENDENT VARIABLES WITH CONSTANT COEFFICIENT

Ву

Mikio NAKAMURA

(Received September 30, 1955)

§1. The proposed equation is of the form:

$$(1.1) \qquad \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2 w}{\partial x_i \partial x_j} + \sum_{i=1}^{n} a_i \frac{\partial w}{\partial x_i} + a_0 w = f(x_1, x_2, \dots, x_n),$$

where a_0 , a_i , $a_{ij} (= a_{ji})$, $i = 1, 2, \dots, n$ are given real constant, and $f(x_1, x_2, \dots, x_n)$ is a given integrable function.

First we intend to find the complementary function, i.e. the general integral of

(1.2)
$$\sum_{i,j=1}^{n} a_{ij} \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i} \frac{\partial w}{\partial x_{i}} + a_{0} w = 0.$$

We commence with a particular case, such that the lefthanded side is resoluble into linear factors as

$$\left(\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}} + b_{0}\right) \left(\sum_{j=1}^{n} c_{j} \frac{\partial}{\partial x_{j}} + c_{0}\right) w = 0,$$

where b's, c's are constants, and, since (1.1) is assumed to be really of second order, at least one among a_{ij} and accordingly one of b_i and c_j should be non-zero, so that conveniently let it be $b_1c_1 \neq 0$.

Since the factors of product in (1.3) are commutative, the required complementary function shall be found by solving

$$\left(\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}} + b_{0}\right) w = 0,$$

or

$$\left(\sum_{i=1}^{n} c_{j} \frac{\partial}{\partial x_{i}} + c_{0}\right) w = 0.$$

On writing the subsidiary equation of the partial differential equation of first order (1.4)

If all $a_{ii}=0$, this assumption becomes absurd, to speak more we must say that some $b_i c_j \neq 0$. But the matter being trivial, only for the sake of brevity we have assumed as above.

$$\frac{dx_1}{b_1} = \frac{dx_2}{b_2} = \dots = \frac{dx_n}{b_n} = \frac{dw}{-b_0w},$$

where $b_1 \neq 0$, we see immediately that their solutions are

$$x_i - \frac{b_i}{b_1} x_1 = \text{const.}, \quad i = 2, 3, ..., n,$$

and

$$w \exp\left\{\frac{b_0}{b_1}x_1\right\} = \text{const.},$$

so that the general integral of (1.4) is

(1.6)
$$w = \exp\left\{-\frac{b_0}{b_1}x_1\right\} \varPhi\left(x_2 - \frac{b_2}{b_1}x_1, \dots, x_n - \frac{b_n}{b_1}x_1\right),$$

where Φ denotes any arbitrary function. Quite similarly with (1.5) we get

(1.7)
$$w = \exp \left\{-\frac{c_0}{c_1}x_1\right\} \psi \left(x_2 - \frac{c_2}{c_1}x_1, ..., x_n - \frac{c_n}{c_1}x_1\right).$$

Therefore the required general integral of (1.2) is given by

$$(1.8) w = e^{-\frac{b_0}{b_1}x_1} \varPhi\left(x_2 - \frac{b_2}{b_1}x_1, \dots, x_n - \frac{b_n}{b_1}x_1\right) + e^{-\frac{c_0}{c_1}x_1} \psi\left(x_2 - \frac{c_2}{c_1}x_1, \dots, x_n - \frac{c_n}{c_1}x_1\right),$$

where Φ and ψ are arbitrary functions.

In the case, that all $b_i = c_i$, however (1.3) becomes

$$\left(\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}} + b_{0}\right)^{2} w = 0,$$

and the corresponding solution (1.8) contains essentially only one arbitrary function, so that it ceases to be general. To obtain the general integral, let us put

$$\left(\sum_{i=1}^n b_i \frac{\partial}{\partial x_i} + b_0\right) w = v,$$

and solve

$$\left(\sum_{i=1}^{n} b_i \frac{\partial}{\partial x_i} + b_0\right) v = 0.$$

In view of (1.6) the latter's general integral is

$$v = \exp \left\{-\frac{b_0}{b_1}x_1\right\} \mathscr{Q}\left(x_2 - \frac{b_2}{b_1}x_1, ..., x_n - \frac{b_n}{b_1}x_1\right),$$

and accordingly we have to solve

$$\left(\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}} + b_{0}\right) w = \exp\left\{-\frac{b_{0}}{b_{1}} x_{1}\right\} \mathscr{Q}\left(x_{2} - \frac{b_{2}}{b_{1}} x_{1}, \dots, x_{n} - \frac{b_{n}}{b_{1}} x_{1}\right).$$

With regard to this linear partial differential equation of first order the subsidiary

equations become

$$\frac{dx_1}{b_1} = \frac{dx_2}{b_2} = \dots = \frac{dx_n}{b_n} = \frac{dw}{\exp\left\{-\frac{b_0}{b_1}x_1\right\}} \, \varphi\left(x_2 - \frac{b_2}{b_1}x_1, \dots, x_n - \frac{b_n}{b_1}x_1\right) - b_0w}.$$

whose solutions are n-1 equations

$$x_i - \frac{b_i}{b_1} x_1 = k_i$$
 $(i = 2, 3, ..., n),$

where k_i are arbitrary constants, and one more equation that is obtainable from

$$\frac{dw}{dx_1} + \frac{b_0}{b_1}w = \frac{1}{b_1}\exp\left\{-\frac{b_0}{b_1}x_1\right\} \Phi(k_2, \dots, k_n),$$

i. e.

where $k_i = x_i - \frac{b_i}{b_1} x_1$ ($i = 2, 3, \dots, n$), and $\frac{1}{b_1} \Phi$ can be written simply Φ as an arbitrary function. Therefore the general integral of (1.9) is

(1.10)
$$w = \exp\left\{-\frac{b_0}{b_1}x_1\right\} \left[x \, \Phi\left(x_2 - \frac{b_2}{b_1}x_1, \dots, x_n - \frac{b_n}{b_1}x_1\right) + \psi\left(x_2 - \frac{b_2}{b_1}x_1, \dots, x_n - \frac{b_n}{b_1}x_1\right)\right],$$

where Φ and ψ are arbitrary functions.

Next we proceed to find a particular integral of (1.1). For this purpose we put again in view of (1.3)

$$\left(\sum_{i=1}^{n} c_{i} \frac{\partial}{\partial x_{i}} + c_{0}\right) w = u$$

and

$$\left(\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}} + b_{0}\right) u = f(x_{1}, x_{2}, \dots, x_{n}).$$

Now the subsidiary equations of the latter being

$$\frac{dx_1}{b_1} = \frac{dx_2}{b_2} = \dots = \frac{dx_n}{b_n} = \frac{du}{f(x_1, \dots, x_n) - b_0 u},$$

their solutions are again

$$x_i - \frac{b_i}{b_1} x_1 = k_i$$
 $(i = 2, 3, ..., n),$

and the solution of

$$\frac{du}{dx_1} + \frac{b_0}{b_1}u = \frac{1}{b_1}f(x_1, ..., x_n),$$

i. e.

$$u \exp\left\{\frac{b_0}{b_1}x_1\right\} = \frac{1}{b_1} \int \exp\left\{\frac{b_0}{b_1}x_1\right\} f\left(x_1, \frac{b_2}{b_1}x_1 + k_2, \dots, \frac{b_n}{b_1}x_1 + k_n\right) dx_1 + k_1.$$

Hence, on setting the additional arbitrary constant $k_1=0$, we obtain as a particular solution of (1.12)

$$(1.13) u = \frac{1}{b_1} \exp\left\{-\frac{b_0}{b_1}x_1\right\} \int \exp\left\{\frac{b_0}{b_1}x_1\right\} f\left(x_1, \frac{b_2}{b_1}x_1 + k_2, \cdots, \frac{b_n}{b_1}x_1 + k_n\right) dx_1,$$

where constants k_i should be replaced by $x_i - \frac{b_i}{b_1} x_1$ after integration, so that it yields

$$u=v(x_1, x_2, \ldots, x_n).$$

Substituting this in (1.11) and solving it, we get a solution of (1.11), namely, a particular integral of the linear partial differential equation of second order (1.11)

$$(1.14) w = \frac{1}{c_1} \exp\left\{-\frac{c_0}{c_1}x_1\right\} \int \exp\left\{\frac{c_0}{c_1}x_1\right\} v\left(x_1, \frac{c_2}{c_1}x_1 + l_2, \cdots, \frac{c_n}{c_1}x_1 + l_n\right) dx_1,$$

where again l_i must be replaced by $x_i - \frac{c_i}{c_1}x_1$ after integration.

Example 1.

$$2\frac{\partial^{2} w}{\partial x^{2}} + 3\frac{\partial^{2} w}{\partial y^{2}} - 4\frac{\partial^{2} w}{\partial z^{2}} - 5\frac{\partial^{2} w}{\partial x \partial y} + \frac{\partial^{2} w}{\partial y \partial z} - 2\frac{\partial^{2} w}{\partial x \partial z} + 8\frac{\partial^{2} w}{\partial z} - 10\frac{\partial^{2} w}{\partial y} - 4\frac{\partial^{2} w}{\partial z} + 8w = yze^{-2x}.$$

Factorizing the left-handed member, we get

$$\left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + \frac{\partial}{\partial z} + 2\right) \left(2\frac{\partial}{\partial x} - 3\frac{\partial}{\partial y} - 4\frac{\partial}{\partial z} + 4\right) w = yze^{-2x},$$

and thus $b_1=1$, $b_2=-1$, $b_3=1$, $b_0=2$, $c_1=2$, $c_2=-3$, $c_3=-4$, $c_0=4$. Hence the complementary function becomes by virtue of (1.8)

$$w = e^{-2x} \{ \Phi(y+x, z-x) + \psi(2y+3x, z+2x) \},$$

while the particular integral is obtained by means of (1.13) and (1.14) as follows:

$$u = e^{-2x} \int (k_2 - x) (k_3 + x) dx = e^{-2x} \left\{ k_2 k_3 x + \frac{1}{2} (k_2 - k_3) x^2 - \frac{x^3}{3} \right\}$$

= $e^{-2x} \left[xyz - \frac{1}{2} x^2 y + \frac{1}{2} x^2 z - \frac{1}{3} x^3 \right],$

and

$$\begin{split} w &= \frac{1}{2} e^{-2x} \int e^{2x} u \, dx \\ &= \frac{1}{2} e^{-2x} \int e^{2x} e^{-2x} \left\{ x (l_2 - \frac{3}{2} x) \, (l_3 - 2x) - \frac{1}{2} x^2 (l_2 - \frac{3}{2} x) + \frac{1}{2} x^2 (l_3 - 2x) - \frac{x^3}{3} \right\} \, dx \end{split}$$

$$= \frac{1}{2}e^{-2x} \left[\frac{x^2}{2} l_2 l_3 - \frac{x^3}{3} \left(\frac{5}{2} l_2 + l_3 \right) + \frac{29}{48} x^4 \right]$$

$$= \frac{1}{2}e^{-2x} \left[\frac{3}{32} x^4 + \frac{1}{12} x^3 y + \frac{5}{24} x^3 z + \frac{1}{4} x^2 yz \right].$$

It is easy to check that

$$u = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + \frac{\partial}{\partial z} + 2\right)w = e^{-2x} \left[\frac{x^3}{2} + 2x^2y + \frac{3}{8}x^2z + \frac{1}{2}xyz\right],$$
$$\left(2\frac{\partial}{\partial x} - 3\frac{\partial}{\partial y} - 4\frac{\partial}{\partial z} + 4\right)u = e^{-2x}yz.$$

Example 2. Our method might be repeatedly applied e.g. for a linear partial differential equation of third order as

$$\left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} + \frac{\partial}{\partial z} + 2\right) \left(2\frac{\partial}{\partial x} - 3\frac{\partial}{\partial y} - 4\frac{\partial}{\partial z} + 4\right) \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} + 2\right) v = e^{-2x}yz.$$

Putting $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} + 2\right)v = w$, the problem reduces to Ex. 1, and w is rendered by the above result. Hence the particular integral is found similarly, as before,

$$v = e^{-2x} \int w dx \quad (y = x + h_2, z = x + h_3)$$

$$= e^{-2x} \left[\frac{1}{12} h_2 h_3 x^3 + \frac{1}{96} (8h_2 + 11h_3) x^4 + \frac{61}{480} x^5 \right]$$

$$= e^{-2x} \left[\frac{x^5}{80} + \frac{7}{12} x^4 y + \frac{1}{32} x^4 z - \frac{1}{12} x^3 y z \right].$$

while the complementary function is easily found to be

$$V = e^{-2x} \{ \Phi(y+z, z-x) + \psi(2y+3x, z+2x) + \Theta(y-x, z-x) \},$$

where Φ , Ψ , Θ are arbitrary functions.

§2. Next we shall treat the case that does not permit any factorization like (1.3). In this case we will write in a standard form the given linear partial differential equation of second order

(2.1)
$$\sum_{i, j=1}^{n} a_{ij} \frac{\partial^2 w}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b_i \frac{\partial w}{\partial x_i} + c_0 w = f(x_1, x_2, \dots, x_n),$$

where $a_{ij}(=a_{ji})$, b_i , c_0 $(i, j = 1, 2, \dots, n)$ are given real constants.

As well known, the symmetric matrix $A=(a_{ij})$ can be brought into a diagonal matrix by operating a suitably chosen orthogonal matrix T:

(2.2)
$$\bar{T}AT = A' = \begin{pmatrix} a_1' & 0 \\ 0 & a_n' \end{pmatrix},$$

where

$$T = \begin{pmatrix} l_{11} \cdots l_{1n} \\ \vdots \\ l_{n} \cdots l_{nn} \end{pmatrix}, \quad \bar{T} = \begin{pmatrix} l_{11} \cdots l_{n1} \\ \vdots \\ l_{1n} \cdots l_{nn} \end{pmatrix}$$

with $\bar{T}=T^{-1}$, $T\bar{T}=I$. If $\mathfrak x$ is transformed into $\mathfrak x'$ by T:

(2.3)
$$T_{\Sigma} = \begin{pmatrix} l_{11} \cdots l_{1n} \\ \vdots & \ddots & \vdots \\ l_{n1} \cdots \cdots & l_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix} = \Sigma', \text{ or } \Sigma = \overline{T}_{E'},$$

the binary quadratic form

(2.4)
$$Q = \sum_{i, j=1}^{n} a_{ij} x_i x_j = \bar{\chi} A \chi$$
$$= (x_1, \dots, x_n) \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{pmatrix}$$

shall be transformed into the standard form

(2.5)
$$\sum_{i=1}^{r} a_i' x_i'^2$$

where r denotes the rank of matrix A (or it may be written still $\sum_{i=1}^{n} a'_i x'_i^2$, but now some a'_i are allowed to be 0). By transformation (2.3) we get $x_j = \sum l_{ij} x'_i$, so that $\frac{\partial w}{\partial x'_i} = \sum_{j} \frac{\partial w}{\partial x_j} \frac{\partial x_j}{\partial x'_i} = \sum_{j} l_{ij} \frac{\partial w}{\partial x_j}$ and similarly $\frac{\partial w}{\partial x_j} = \sum_{i} l_{ij} \frac{\partial w}{\partial x'_i}$. Thus

(2.6)
$$\begin{cases} \frac{\partial}{\partial x_{i}'} = l_{j1} \frac{\partial}{\partial x_{1}} + l_{i2} \frac{\partial}{\partial x_{2}} + \dots + l_{in} \frac{\partial}{\partial x_{n}} & (i = 1, 2, \dots, n), \\ \frac{\partial}{\partial x_{j}} = l_{1j} \frac{\partial}{\partial x_{1}'} + l_{2j} \frac{\partial}{\partial x_{2}'} + \dots + l_{nj} \frac{\partial}{\partial x_{n}'} & (j = 1, 2, \dots, n). \end{cases}$$

By the transformations, the quadratic differential form $\sum_{i,j=1}^{n} a_{ij} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} w$ in (2.1) could be brought into $\sum_{i=1}^{n} a'_i \frac{\partial^2 w}{\partial x'_i^2}$. At the same time, the linear differential form in (2.1) would be transformed into

(2.7)
$$\sum_{j=1}^{n} b_{j} \frac{\partial w}{\partial x_{j}} = \sum_{j} b_{j} \sum_{i} l_{ij} \frac{\partial w}{\partial x'_{i}} = \sum_{i} (\sum_{j} l_{ij} b_{j}) \frac{\partial w}{\partial x'_{i}} = \sum_{i} b'_{i} \frac{\partial w}{\partial x'_{i}}$$

where $\mathfrak{b}' = T\mathfrak{b}$, *i.e.*

(2.8)
$$\begin{pmatrix} b'_1 \\ \vdots \\ b'_n \end{pmatrix} = \begin{pmatrix} l_{11} \cdots l_{1n} \\ \vdots \\ l_{n1} \cdots l_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix},$$

and lastly either $c'_0 = c_0$, or it might be written as $c_0 = \sum_{i=1}^{n} c'_i$, where c'_i are chosen arbitrarity, so far as their sum become c_0 .

Thus, on performing T, the partial differential equation (2.1) reduces to

(2.9)
$$\sum_{i=1}^{n} \left(a_i' \frac{\partial^2 w}{\partial x_i'^2} + b_i' \frac{\partial w}{\partial x_i'} + c_i' w \right) = f_1(x_1, x_2, \dots, x_n),$$

which form we have to treat below.

To find a complete integral, we write $f_1 = 0$:

(2.10)
$$\sum_{i=1}^{n} \left(a_i' \frac{\partial^2 w}{\partial x_i'^2} + b_i' \frac{\partial w}{\partial x_i'} + c_i' w \right) = 0.$$

Now, as usually made in Harmonic Analysis, we assume that

(2.11)
$$w = \iint_{i=1}^{n} u_i(x_i),$$

where every u_i is a function of x_i only. On substituting (2.11) in (2.10), and dividing out by w, we obtain

$$\sum_{i=1}^{n} \frac{1}{u_{i}} \left(a'_{i} \frac{d^{2}u_{i}}{dx'_{i}^{2}} + b'_{i} \frac{du_{i}}{dx'_{i}} + c'_{i} u_{i} \right) = 0,$$

so that each summand ought to vanish reparately:

(2.12)
$$a_i' \frac{d^2 u_i}{dx_i'^2} + b_i' \frac{du_i}{dx_i'} + c_i' u_i = 0, \qquad (i = 1, 2, \dots, n),$$

with auxiliary equation

$$(2.13) a_i' m^2 + b_i' m + c_i' = 0.$$

If the rank of matrix A be n, namely the determinant $|A| = |A'| = \prod_{i=1}^{n} a'_i \neq 0$, no a'_i could be zero, and consequently (2.13) should have two roots;

$$\alpha_i, \ \beta_i = \frac{1}{2a_i'} \{b_i' \pm \sqrt{b_i'^2 - 4a_i'c_i'}\} \qquad (i = 1, 2, ..., n)$$

and we obtain, as solutions

$$u_i(x_i) = A_i \exp \alpha_i x_i + B_i \exp \beta_i x_i$$
 if $\alpha_i \neq \beta_i$,
= $(A_i x_i + B_i) \exp \alpha_i x_i$ if $\alpha_i = \beta_i$.

or else

Thus we get, as a complete integral of (2.9),

$$w = u_1(x_1) u_2(x_2) \cdots u_n(x_n),$$

wich contains 3n-1 arbitrary constants A_i , B_i and c'_i with condition $\sum_{i=1}^n c'_i = c_0$. If the rank of matrix A be $1 \le r < n$, then equations (2.12) becomes

(2.14)
$$\begin{cases} \frac{1}{u_i} \left(a_i' \frac{d^2 u_i}{d x_i'^2} + b_i' \frac{d u_i}{d x_i'} + c_i' u_i \right) = 0 & (i = 1, 2, ..., r), \\ b_i' \frac{d u_i}{d x_i'} + c_i' u_i = 0 & (i = r+1, ..., n). \end{cases}$$

In the latter equations, every coefficients b'_i surely $\neq 0$, since, otherwise, the very variable x'_i does disappear, what contradicts our assumption of n independent variables, and those solutions are

$$u_i(x_i) = C_i \exp\left\{\frac{c_i'}{b_i'}x_i\right\} \qquad (i = r+1, \dots, n).$$

However, in a complete integral $w = \prod_{i=1}^{n} u_i(x_i)$, the constants C_i may be mingled in some A_j , B_j , so it contains only n+2r-1 arbitrary constants.

In the present case, it is somewhat difficult to discuss in general how to obtain a particular integral. We ought to find it ingeneously by problem. However, if it occurs that

$$f(x_1, \dots, x_n) \sim f(x_1^{(0)}, \dots, x_n^{(0)}) + \sum_{i=1}^n \left(\frac{\partial f}{\partial \bar{x}_i^{(0)}}\right) (x_i - x_i^{(0)}) = d_0 + \sum_{i=1}^n d_i x_i,$$

as seen in the small oscillation about equilibrium position, then upon writing

$$d_0 \delta_i^1 + d_i x_i$$
, with $\delta_i^1 = 0$ $(i = 1)$ or $= 0$ $(i \neq 1)$

in the right-handed side of (2.12) or (2.14), we may find the required particular integral.

§3. To illustrate how the above mentioned transformation to be executed actually, let us consider the case n=3:

(3.1)
$$A'\frac{\partial^{2} w}{\partial x^{2}} + B'\frac{\partial^{2} w}{\partial y^{2}} + C'\frac{\partial^{2} w}{\partial z^{2}} + 2F\frac{\partial^{2} w}{\partial y \partial z} + 2G\frac{\partial^{2} w}{\partial z \partial x} + 2H\frac{\partial^{2} w}{\partial x \partial y} + 2K\frac{\partial w}{\partial x} + 2L\frac{\partial w}{\partial y} + 2M\frac{\partial w}{\partial z} + Nw = f(x, y, z),$$

where A', B', ..., N are given (real) constants, and f(x, y, z) a given function. We conceive the problem of principal axes of the corresponding quadratic surface:

$$A'x^2 + B'y^2 + C'z^2 + 2Fyz + 2Gzx + 2Hxy = R.$$

To reduce this to the standard form we solve the characteristic equation

(3.2)
$$\Delta(\lambda) = \begin{vmatrix} A' - \lambda & H & G \\ H & B' - \lambda & F \\ G & F & C' - \lambda \end{vmatrix} = 0,$$

and let its 3 characteristic roots be λ_1 , λ_2 , λ_3 .

i) When 3 roots are all different. Then, among the simultaneous equations

(3.3)
$$\begin{cases} (A' - \lambda_i) l_i + H m_i + G n_i = 0 \\ H l_i + (B' - \lambda_i) m_i + F n_i = 0 \\ G l_i + F m_i + (C' - \lambda_i) n_i = 0 \end{cases}$$
 $(i = 1, 2, 3),$

there only two being independent, we have to take

$$(A' - \lambda_i) l_i + H m_i + G n_i = 0$$

$$(H + G) l_i + (B' + F - \lambda_i) m_i + (F + C' - \lambda_i) n_i = 0.$$

Whence the ratios $l_i: m_i: n_i$, and further on combing them with $l_i^2 + m_i^2 + n_i^2 = 1$, the respective values l_i, m_i, n_i (i=1, 2, 3) could be determined; moreover selecting the root-signs \pm for l_i, m_i, n_i adequately, it is always possible to make the Jacobian

$$J = \left| egin{array}{cccc} l_1 & l_2 & l_3 \ m_1 & m_2 & m_3 \ n_1 & n_2 & n_3 \end{array}
ight| = 1.$$

ii) When 2 roots of (2.3) are equal, say $\lambda_2 = \lambda_3$. We can determined l_1 , m_1 , n_1 as in i). As to λ_2 , λ_3 , we have

$$(A' - \lambda_2) l_2 + Hm_2 + Gn_2 = 0,$$

$$(A' - \lambda_3) l_3 + Hm_3 + Gn_3 = 0,$$

and

$$l_2l_3 + m_2m_3 + n_2n_3 = 0$$
,

of which first two assure that the directions (l_2, m_2, n_2) , (l_3, m_3, n_3) are perpendicular to (l_1, m_1, n_1) . Here we ought to determine 4 ratio's $l_2: m_2: n_2, l_3: m_3: n_3$ from the above 3 equations, so that one unknown may be assumed at will. Hence, e.g. on taking $l_2=0$, we get $m_2: n_2=-G: H$, and consequently

$$(A' - \lambda_2)l_3 + Hm_3 + Gn_3 = 0, \quad -Gm_3 + Hn_3 = 0,$$

whence

$$l_3: m_3: n_3 = -(G^2 + H^2): H(A' - \lambda_2): G(A' - \lambda_3).$$

Thus in the above two cases we have already found a triple orthogonal system with Jacobien J=1. Hence making transformations

(3.4)
$$\begin{cases} \xi = l_1 x + m_1 y + n_1 z \\ \eta = l_2 x + m_2 y + n_2 z \\ \zeta = l_3 x + m_3 y + n_3 z \end{cases} \quad \text{or} \quad \begin{cases} x = l_1 \xi + l_2 \eta + l_3 \zeta \\ y = m_1 \xi + m_2 \eta + m_3 \zeta \\ z = n_1 \xi + n_2 \eta + n_3 \zeta \end{cases}$$

i.e.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = T \begin{pmatrix} \xi \\ \eta \\ \xi \end{pmatrix} \quad \text{with} \quad T = \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{pmatrix}, \quad |T| = 1,$$

we have

$$A'x^{2} + B'y^{2} + C'z^{2} + 2Fyz + 2Gzx + 2Hxy = \lambda_{1}\xi^{2} + \lambda_{2}\eta^{2} + \lambda_{3}\xi^{2}.$$

Hence also by transformation

$$\begin{cases} \frac{\partial}{\partial x} = l_1 \frac{\partial}{\partial \xi} + l_2 \frac{\partial}{\partial \eta} + l_3 \frac{\partial}{\partial \zeta} \\ \frac{\partial}{\partial y} = m_1 \frac{\partial}{\partial \xi} + m_2 \frac{\partial}{\partial \eta} + m_3 \frac{\partial}{\partial \zeta} & J = \begin{vmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \\ n_1 & n_2 & n_3 \end{vmatrix} = 1, \\ \frac{\partial}{\partial z} = n_1 \frac{\partial}{\partial \xi} + n_2 \frac{\partial}{\partial \eta} + n_3 \frac{\partial}{\partial \zeta} & , \end{cases}$$

the linear partial differential equation (3.1) becomes

$$\lambda_1 \frac{\partial^2 w}{\partial \xi^2} + \lambda_2 \frac{\partial^2 w}{\partial \eta^2} + \lambda_3 \frac{\partial^2 w}{\partial \zeta^2} + 2K_1 \frac{\partial w}{\partial \xi} + 2L_1 \frac{\partial w}{\partial \eta} + 2M_1 \frac{\partial w}{\partial \zeta} + N_1 w = f_1(\xi, \eta, \zeta).$$

Remark. When (3.2) has 3 equal roots $\lambda_1 = \lambda_2 = \lambda_3 = \lambda$, we have $\Delta(\lambda) = 0$, $\Delta'(\lambda) = 0$, $\Delta''(\lambda) = 2(A' + B' + C') - 6\lambda = 0$. Hence $\lambda = \frac{1}{3}(A' + B' + C')$ and this being substituted in $\Delta'(\lambda) = 0$, we get

$$(A'-B')^2 + (B'-C')^2 + (C'-A')^2 + 2F^2 + 2G^2 + 2H^2 = 0,$$

so that, for real coefficients, we must have A'=B'=C', F=G=H=0. Therefore the quadratic differential form in (3.1) becomes

$$A'\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)w,$$

i.e. Laplace's form and there is no need of transformation.

Example 3.

$$6\frac{\partial^2 w}{\partial y^2} - 18\frac{\partial^2 w}{\partial y \partial z} - 6\frac{\partial^2 w}{\partial x \partial z} + 2\frac{\partial^2 w}{\partial x \partial y} - 9\frac{\partial w}{\partial x} + 5\frac{\partial w}{\partial y} - 5\frac{\partial w}{\partial z} + w = 0.$$

Here

$$|A| = \begin{vmatrix} 0 & 1 & -3 \\ 1 & 6 & -9 \\ -3 & -9 & 0 \end{vmatrix} = 0$$
, and the matrix A is of rank 2.

Also from

$$\Delta(\lambda) = \begin{vmatrix} -\lambda & 1 & -3 \\ 1 & 6-\lambda & -9 \\ -3 & -9 & -\lambda \end{vmatrix} = -\lambda(\lambda+7)(\lambda-13) = 0,$$

we get 3 differents roots 0, -7, 13, and correspondingly

$$l_1: m_1: n_1 = -9: 3: 1$$

$$l_2: m_2: n_2 = 1: 2: 3$$

$$l_3: m_3: n_3 = 1: 4: -3$$
so
$$T = \begin{pmatrix} -9/\sqrt{91} & 3/\sqrt{91} & 1/\sqrt{91} \\ 1/\sqrt{14} & 2/\sqrt{14} & 3/\sqrt{14} \\ 1/\sqrt{26} & 4/\sqrt{26} & -3/\sqrt{26} \end{pmatrix}.$$

Therefore by transformation

$$\begin{pmatrix} \xi \\ \eta \\ \zeta \end{pmatrix} = T \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ so also } \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} = \bar{T} \begin{pmatrix} \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial \zeta} \end{pmatrix}$$

the given partial differential equation is reduced to

$$7\frac{\partial^2 w}{\partial \eta^2} - 13\frac{\partial^2 w}{\partial \zeta^2} + \sqrt{91}\frac{\partial w}{\partial \xi} - \sqrt{14}\frac{\partial w}{\partial \eta} + \sqrt{26}\frac{\partial w}{\partial \zeta} + w = 0.$$

This becomes, on assuming $w = X(\xi)Y(\eta)Z(\zeta)$

$$\left(\frac{\sqrt{91}}{X}\frac{dX}{d\xi}+1\right)+\frac{1}{Y}\left(\frac{d^2Y}{d\eta^2}-\sqrt{14}\frac{dY}{d\eta}\right)-\frac{1}{Z}\left(13\frac{d^2Z}{d\zeta^2}-\sqrt{26}\frac{dZ}{d\zeta}\right)=0.$$

Putting the expression under every bracket =0, we get

$$X = A_1 \exp\left\{-\frac{\xi}{\sqrt{91}}\right\}, \quad Y = A_2 \exp\left\{\sqrt{\frac{2}{7}\eta}\right\} + B_2, \quad Z = A_3 \exp\left\{\sqrt{\frac{2}{13}\zeta}\right\} + B_3,$$

so that a complete integral of the given partial differential equation is

$$w = \exp\left\{\frac{1}{91}(-9x+3y+z)\right\} \left[A_2 \exp\left\{\frac{1}{7}(x+y+z)\right\} + B_2\right] \times \left[A_3 \exp\left\{\frac{1}{13}(x+4y-3z)\right\} + B_3\right],$$

where A_2 , B_2 , A_3 , B_3 are arbitrary constants.

Example 4.

$$\frac{\partial^2 w}{\partial z^2} = 3\frac{\partial w}{\partial x} + 4\frac{\partial w}{\partial y}$$

Here

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and its rank is 1. Assuming w = X(x)Y(y)Z(z), the given equation becomes

$$\frac{1}{Z}\frac{d^2Z}{dz^2} = \frac{3}{X}\frac{dX}{dx} + \frac{4}{Y}\frac{dY}{dy}.$$

Putting

$$\frac{3}{X}\frac{dX}{dx} = c_1, \quad \frac{4}{Y}\frac{dY}{dy} = c_2, \quad \frac{1}{Z}\frac{d^2Z}{dz^2} = c_1 + c_2 = c,$$

we obtain

$$X = k_1 \exp\left\{\frac{c_1}{3}x\right\}, \quad Y = k_2 \exp\left\{\frac{c_2}{4}y\right\},$$

$$Z = A_1 e^{y/cz} + B_1 e^{-y/cz}, \quad \text{if } c > 0,$$

$$= A_1 \cos \sqrt{-cz} + B_1 \sin \sqrt{-cz}, \quad \text{if } c < 0,$$

$$= A_1 + B_1 z, \quad \text{if } c = 0,$$

where $c=c_1+c_2$. Therefore, a complete integral of the given partial differential epuation is

$$w = Z \exp \left\{ \frac{c_1}{3} x + \frac{c_2}{4} y \right\},\,$$

which contains 4 arbitrary constants A_1 , B_1 , c_1 , c_2 .

The writer closes his paper by expressing his hearty thanks to Professor Y. Watanabe for his interest in this work and valuable suggestions.