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§1. The proposed equation is of the form:

== Pw
(]'1) i,%laii 8x,8x + %ala + ao'w —f(xl, Xgy cty xn>7

where ao, a;, a;(=aj;), i=1,2,...,n are given real constant, and f(x1, %2, ---, %,) is
a given integrable function.
First we intend to find the complementary function, i.e. the general integral of
= *w
9 —
(1.2) > a”@x,@x + Z,a,,a + aow = 0.

i, j=1 i=1
We commence with a particular case, such that the lefthanded side is resoluble into
linear factors as

(1.3) (S, + ) (Ziermy, +aJo =0,

i=1

where b’s, ¢’s are constants, and, since (1.1) is assumed to be really of second order,
at least one among a;; and accordingly one of b; and ¢; should be non-zero, so
that conveniently let it be bic; == 0.

Since the factors of product in (1.3) are commutative, the required complementary
function shall be found by solving

(1.4) (é i3, +bo> w =0,
or
(1.5) (,‘?1618 + co>w = 0.

On writing the subsidiary equation of the partial differential equation of first order

(1.4)

1 If all a;;=0, this assumption becomes absurd, to speak more we must say that some b;cj==0.
But the matter being trivial, only for the sake of brevity we have assumed as above.
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dx1 _ dx2 I dx,, _ dw

b1 bz bn - b(ﬂv ?

where b, 50, we see immediately that their solutions are
x; — b—ixl = const., :1=2,3 -..,n,
and
bo
w eXP Z;xl =const.,

so that the general integral of (1.4) is

(1.6) w = exp {— go'xj} (l)(xz = %xl, ey Xy — Z"*x1>,
1 \ 1

where @ denotes any arbitrary function. Quite similarly with (1.5) we get

(1.7) w = exp {— ZO,xl} A <x2 @ Xy, veey Xy — e xI) .
1 ) /

Cy Cy
Therefore the required general integral of (1.2) is given by
~boy, — €0,y 2 n
(1.8) w=c¢ " (ﬁ<x2— b, Ky voey Xp — n )-{- e «[r<x Eixl, ey Xy — ¢ x1> ,
bl blv 1

where @ and + are arbitrary functions.

In the case, that all b;=c;, however (1.3) becomes

(1.9) K,‘l 2 +b0> w = 0,

and the corresponding solution (1.8) contains essentially only one arbitrary function,

so that it ceases to be general. To obtain the general integral, let us put

(S beg +bo)w =12,

and solve

Km] - +b0>v—0

In view of (1.6) the latter’s general integral is

v = exp {— %xl} (])<x2 — ]b%x"’ cery Xp — ZZ;Z x1> ,

and accordingly we have to solve

bo b b,
(Lnl ‘ax +b0>w = €xp { 1} ([/<x2— bf*xl, ey Xp— [;1x1>

With regard to this linear partial differential equation of first order the subsidiary
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cquations become

dey _dxy _ _dx._ dw
by b b exp {-—Il}:xl} (I)<x3 ——%jxl, ey X ——b'-’x1> —bow

whose solutions are n—1 cquations

b;

X = tm = ki i=2,3,-.,n),
1

where k; are arbitrary constants, and one more equation that is obtainable from

d& ,b,o, _ 1 bo. }

w eXp {Zﬂlr,} - zll O (kay -y k) = K,

b; . 1 . . .
where ki:xi—-?;xl t=2,3,---,n), and b, @ can be written simply & as an arbi-

trary function. Therefore the gencral integral of (1.9) is

) LRSS0 ‘{‘“ ZQ x1} [x(ll<x2— Z%xl, ey Xy — znxl>
1 1 1

where @ and + are arbitrary functions.
Next we proceed to find a particular integral of (1.1). For this purposc wc

put again in view of (1.3)

(1.11D) (l_},:‘lc,-aai + co>w=u
and
Ii‘ 8
(1_12) <Zb,§’ +bo>lb :f(xl, Xa, ---,.’\’,J-
i=1 x;
Now the subsidiary equations of the latter being
d&] = dxz = se. = dxn du
by b b flx, - — bou’

their solutions are again
X; — b X — ]f,; (i = 2, 3, ceey 71),
1

and the solution of

d b
(—i_i + 7b07 f(xh ctty xn):
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b n
u exp { x]f =3 = Sexp {b xl}f<x1, b—ixl d-Fegy oee, 'Zvl—xl—Fk,L) dxi+ k.

Hence, on setting the additional arbitrary constant k=0, we obtain as a particular
solution of (1.12)

(1.13) u = Bl] exp{—%;*xl} Sexp{z }f(xl, Z" %1+ koy oo, 2 %, +k, >dx1,

b;: . . .
where constants %; should be replaced by X — x4 after integration, so that it
1
yields
u=1v (xb X2y cc0y xn)'

Substituting this in (1.11) and solving it, we get a solution of (1.11), namely, a

particular integral of the linear partial differential equation of second order (1.11)
1 ¢ co c 5
(1.14) w="_ exp{—eixl} ge\p { xl}v<x1, *szl—l—lz, ---,%lxl-}—l,,) dxy

. C; . .
where again /; must be replaced by x— - *a: after integration.
1

Example 1.
a w azuv _ azw azw . azw
2 ox? + 3 8)/ —4 Oz? Ox0y  Oyoz 28x Iz
a aw 2%
+8—8 —107*——46—+8w—yze :

Factorizing the left-handed member, we get

,9 9 ., 9 (9 @ _ g0 @ — g2E

and thus b:=1, bo=—1, bs=1, by=2, c;=2, coc=—3, cs=—4, coc=4. Hence the
complementary function becomes by virtue of (1.8)

w= e {P(y+=x, z—x) + Y2y + 3x, z+2x)},

while the particular integral is obtained by means of (1.13) and (1.14) as follows:

u=e>* S (ky—x) (ks +x)dx = e™* «{kz kax + *%(kg—k3)x2 — %3}

and

—_ ~2*e’2xgez"e”2" {x(lg— gx) (lg—Qx)—’il)jxi’(lg 5x) + 5 (13—21)—*} X%
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i

o 5
e[Sl = (S h+ )+ Sy et]
1 9
2% y+24x &l x‘yz]'
It is easy to check that

c) 2 3 o[ a3 Y 3 . 1
u = <§x"— )/ -+ 8 +2>1U:e [7()7 = 2x“}’+ 8 X%z + i)ixyz] s

' a Q 787 787 —_ 2%,
<2‘87—oay 4a~+4>u—e Yz,
Example 2. Our method might be repeatedly applied e.g. for a linear partial

differential equation of third order as

(3 2,0 ,o\(0@ o0
. . 9 o< _ 2 2 __
o ay+az+“)<“ax 3oy —*

ARG 2 ] 2
S — =19 = "yz
z+4,)<8x+8y+8z+“>v e yz.
Putting <’aax + éay + 88~ +2)v = w, the problem reduces to Ex. 1, and w is rendered

by the above result. Hence the particular integral is found similarly, as before,
v = e Swdx (y =x+hs, s=x+h3)
61 -
= [1271 of13263 +9b(8/1n+ 11hg)x* +480 J

R - 7 .4, Lo 1 5 ..]
= [80+ 19%°Y T g9 E T 9 yE|
while the complementary function is casily found to be
V=c®{0(y+z z—x) + P 2y+3x 24+2x) + 6 (y—x, s—x)},
where @, ¥, @ are arbitrary functions.
§2. Next we shall treat the case that does not permit any factorization like

(1.3). In this case we will write in a standard form the given linear partial differ-

ential cquation of second order

(2.1) E a;j aa w4 Lb S 4 cow :f(xl, Koy ooy %),
j=1 ;0%

i, i=1

where a;j(=a;:), bi, co (G j=1,2,---,n) are given real constants.
As well known, the symmetric matrix A=(a;;) can be brought into a diagonal
matrix by operating a suitably chosen orthogonal matrix T':
) @
(2.2) TAT = 4 =

a,
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where

with 7=7"", TT=1If ¢ is transformed into 1’ by 7

R ERER L\ % x)
(2'3) _’[1 = . . .......... = g = xl’ or Z = T&l,
lnl ......... Zﬂn X \xr/l,l

the binary quadratic form

n
(2.4) Q:.Z‘llaijxixj:l'Ag
i, j=
Qrp-ee ain %
= (xb ) -’Vn)
(714,00000¢ Gon %n

shall be transformed into the standard form
(2.5) >_:a’ %2

N 2

where r denotes the rank of matrix 4 (or it may be written still La x3%, but now

some a} are allowed to be 0). By transformation (2.3) we get xj—zl,-jxf, so that

9”— O S i ow _ .\ ow
Oa }.Jaxj a.k,, %—lll]al] and Smnlarly axj—k,"l"ax’,' Thus

2 G, a d .
sSk—01 T Y 5 e QR B = ),
Sl ljlaxl + L2 7 8 + + l”'axu G=1,2,--,n),
(2.6)
SR - R S A 9 (i=1,0
axj_l”axi -}—lgjax:,z 4+ +l"j8x; (G=1,2 -, 0.
By the transformations, the quadratic differential form }_J a; 188 aa in (2.1)
i, j=1

could be brought into La,g 1,41 At the same time, the linear differential form

in (2.1) would be transformed into

. ) 2 ,0
(2.7) 31050 =3, S5 =N b) G = 2 G
where /=70, i.e.

bi le ......... ll" [)1

(2.8) — ............ :
[);L [nl ......... l,m bn
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n
and lastly either cy=co, or it might be written as ¢, = >ici, where ¢} are chosen
i=1
arbitrariry, so far as their sum become c.

Thus, on performing 7, the partial differential equation (2.1) reduces to
(2.9 Si(a T+ 813 = filo, =
20 aza /‘7 + i +C w —f1<x11 W2y "y xn)s
which form we have to treat below.

To find a complete integral, we write f,=0:

? 9
(2.10) Sl 525 +815% +ciw ) = 0.
Now, as usually made in Harmonic Analysis, we assume that
(2.11) w= I u;(x;),

i=1

where every u; is a function of x; only. On substituting (2.11) in (2.10), and

dividing out by w, we obtain

n‘f—1~< d”’+b£
u;

72
= “dx;

d,+cu)—0

so that each summand ought to vanish reparately:

(2.12) ,gl/l;'*"b;z /'+Czuz“‘0 (i: 19 27 Tt Tl),

with auxiliary equation
(2.13) aim? + bim + ¢; = 0.

If the rank of matrix A be n, namely the determinant |4|=|A'|= I/ a; 0,
i=1

no a; could be zero, and consequently (2.13) should have two roots;
o B g O VB R G= 12 n)

and we obtain, as solutions

u; (%) = A; exp a;x; + B;exp Bix, if a6,
or else = (d;x; + B;) exp a; x; if a;=p;.
Thus we get, as a complete integral of (2.9),
w = uy (2;) uz (x2) -+~ u, (x,),
wich contains 3n — I arbitrary constants 4, B; and ¢; with condition Zn‘,cﬁ =cp.

i=1
If the rank of matrix 4 be 1<r<n, then equations (2.12) becomes



58 Mikio NAKAMURA

aidx(é +bld&bl e Cf”i) =0 (I' = ]s 27 M) T),

i

1 ( , dPui , dui
(2.14)
bﬁd;lf;_i—{—cﬁui:() G=r+1, -.., n).
In the latter equations, every coefficients b; surely ==0, since, otherwise, the very
variable x} does disappear, what contradicts our assumption of n independent varia-

bles, and those solutions are
u; (x;) = C;exp {gf,x} @=r+1, ..., 0.

However, in a complete integral w= [/ u;(x;), the constants C; may be mingled in
i=1

some A;, Bj, so it contains only n+2r—1 arbitrary constants.
In the present case, it is somewhat difficult to discuss in general how to
obtain a particular integral. We ought to find it ingeneously by problem.

However, if it occurs that

FGrr ooy x0) ~ f@l0, o2l + é <8?ig;) (x; — %) = dp + ?;idixi,
as seen in the small oscillation about equilibriﬁm position, then upon writing
do8t + dix;y, with 8i =0 (¢G=1or =0 G 1)
in the right-handed side of (2.12) or (2.14), we may find the required particular

integral.

§3. To illustrate how the above mentioned transformation to be executed

actually, let us consider the case n=3:

1Pw | Pw | Pw Pw | on FPw | oy OPw
C) Seraaiiean e iiom e e e
.“8 il a ) 8 )
+ QK’% + QLSL}L{ +2M a% - f\”u:f(x, ¥, ;),

(G}

where 4, B’, ..., N are given (real) constants, and [(x,y,z) a given function. We

conceive the problem of principal axes of the corresponding quadratic surface:
A'x + B'y? + Cz2 + 2Fyz + 2Gzx + 2Hxy = R.
To reduce this to the standard form we solve the characteristic equation

j A—-x H G

(3.2) 40) = H B—\x F =0,
t
G F C—x.
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and let its 3 characteristic roots be A1, Az, As.

1)  When 3 roots are all different. Then, among the simultaneous equations
(A" —=x)l; +Hm; + Gn; = 0
(8.3) Hl; + (B — )m; + Fn; =0 G=1.2,3),
Gl + Fm; + (C—X\)n; =0
there only two being independent, we have to take

A —N)Il, + Hm; + Gn; = 0
<H+ G)l; + (B, ’)LF'— )\q’)ﬂli + <F+ C/ —7\,,-)72i = (.

Whence the ratios I; : m; : n;, and further on combing them with [?+m?+n?=]1,
the respective values l;, m;, n; (=1, 2, 8) could be determined; moreover selecting the

root-signs =+ for [;, m;, n; adequately, it is always possible to make the Jacobian

| & I s
J= | m me ms | = 1.

7 Nz ng

1) When 2 roots of (2.3) are equal, say No = Xs. We can determined [, mj, n; as in

1). As to X2, A3, we have

A —N) Iy + Hmg + Gng = 0,

(A/ - kg) l3 + Hm‘3 + G723 = 0,
and

lyls + moms + nang = 0,
of which first two assure that the directions (l2, ms, n2), (I3, ms, ns) are perpendicular
to (ly, mi, ). Here we ought to determine 4 ratio’s l»:ms:ns, ls:ms:ns from the
above 3 equations, so that one unknown may be assumed at will. Hence, e.g. on

taking l,=0, we get ms:n,=—G:H, and consequently

(A" —N\o)ls + Hmg + Gns =0, —Gms+ Hns=0,
whence
l3 img:ing = —(GZ+H2> . H(A/“kz) : G(A,_Kg)
Thus in the above two cases we have already found a triple orthogonal system

with Jacobien J=1. Hence making transformations

[ E=Lx+my+nz x=0E+ Ly + 03¢
(8.4) vy =lox +may + 2z or y=m& 4+ man + ms
l =l +msy +nyz z=m&+ nay +ns&
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x & L Iy s
y |=T|7) with T=1m ms ms|, |T|=1,
z & 1, na 13

we have
A'x? + B'y? + C'z? + 2Fyz + 2Gzx + 2Hxy = ME 4 Aon? + \5E2

Hence also by transformation

9 _, O o 9
o=hg th S b

0 5 € h ko
o
~é;=m1?§+nzzé;~' +7713*;d§ J: lml mg 71235 = l,
3 3 3 3 el
é;':nl’ﬁ +n2§;7* +713*8“é;‘ R

the linear partial differential equation (3.1) becomes

2 2 2 -
MO 0B+ Ay T+ 2k 22 1o, 004 2 T+ Now =16, ©).

Remark.  When (3.2) has 3 equal roots A;=X;=X\;=N\, we have 4\)=0, 4'(\)=0,
4'(\)=2(4"+B +C")—61=0. Hence \= ,é, (A4'+B'+C') and this being substituted
in 4/(\)=0, we get

(A =B +(B —C) P+ (C—A)+2F*+2G°+2H? =0,
so that, for real coeflicients, we must have A’=B'=C, F=G=H=0. Therefore the

quadratic differential form in (3.1) becomes

[ P * *
4 <“a;7+972+é§>w’

i.e. Laplace’s form and there is no need of transformation.

Example 3.
6%‘;— - 18%2%’; —6 2% Qéa%é%/ ~9%0 4 5%’;’— —5% L=,
Here
0 1 -3
|[Al=| 1 6 —9|=0, and the matrix 4 is of rank 2.
-3 -9 0
Also from
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we get 3 diflerents roots 0, —7, 13, and correspondingly

Zl Ly ing = "“9 . 3 5 1 _'9,/'[/9I 3/]/91 1/1/91
lo:meing=1:2:3 so T= 1/v12 2/v/14 3/V14
Z3 Mg i ng = 1:4: _3 1/]/26 4‘/1/26 _3,/]/26 .

Therefore by transformation

9. 9.

- s 9 |_7| 2

(73 =T[y | soalso oy | = T B
© : 2 2
oz ot

the given partial differential equation is reduced to

- Fw Jw Sw . Cw
TG 13552—+1/91 —V14 5 1/26'3'&-!-10:0.

This becomes, on assuming w= X(£)Y (%) Z ()

<Z§l%§+ l) T Y<iz12}:_1/“dY> <13§; V% d§‘> 0.

Putting the expression under cvery bracket =0, we get

so that a complete integral of the given partial differential equation is
1 i 1
w= exp {glf(——9x+3y+z)}» [/12 exp { 7 (x+y+z)} + Bz] X
1
[A;; exp {13 (x+4y—-3z)} + B3] ,

where 4,, Bs, As, Bs arc arbitrary constants.

Example 4.

Pt St
Here
0 0 0
A={0 0 O
0 0 1

and its rank is 1. Assuming w=X(x)Y(y) Z(z), the given equation becomes

3 dX 44y

G
dz? de+Ydy'

1
Z

61
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Putting

we obtain

X =k exp {%w} , Y=rlyexp {%*y} .

7 = A1 + Bie V¢, if ¢>0,
= A,cos 1/ —cz + Bysin v/ —cz, if ¢<0,
= A, + Bz, if ¢=0,

where c=c¢;+¢;. Therefore, a complete integral of the given partial differential

epuation is
w = Zexp {}S: x+ *i;*y} )

which contains 4 arbitrary constants 4y, By, ¢, c2.

The writer closes his paper by expressing his hearty thanks to Professor

Y. Watanabe for his interest in this work and valuable suggestions.



