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In the preceding paper,” we discussed the isolated singular point of an analy-
‘tic function in complex Banach spaces. The states of analytic functions at singular
points are very complicated in complex Banach spaces. The isolated singular point
does not exist generally in complex Banach spaces. If the set of singular points of
an analytic function in complex Banach spaces is a subspace®, then we call the sub-
space “the singular subspace” of an analytic function. In this paper, we investigate
mainly the characters of functions which have the singular subspaces.

In the chapter 1, we discuss homogeneous functions and reciprocal homogeneous
functions of degree n which are analytic on whole spaces except their singular sub-
spaces. The conditions, under which homogeneous functions of degree n are homo-
geneous polynomials of degree n, are stated.

In the chapter 2, removable singular subspaces of analytic functions and another
theorems of functions which have singular subspaces are stated. Finally, some of
the general theorems in complex Banach spaces is applied to the case of functions

of several complex variables.

§ 1. Homogeneous functions and reciprocal homogeneous functions

Let E,, E,, Es, --- be complex Banach spaces and L, be a subspace of E;.

Definition 1. Let an E.-valued function f,(x) defined in the outside of Lo in E, be
analytic and satisfy f,(ax) = *f(x) in the outside of Lo in E., where ot is an arbitrary com-
plex number.  f.(x) is called a homogeneous function of degree n, if n is a positive integer.
f.(x) is called a reciprocal homogeneous function of degree —n, if n is a negative integer. Lo
is called their singular subspaces.

Definition 2. If x, and y, do not belong to Ly and y,=F axo + By for any complex
number o, any complex number B and any y in Lo, then x, and 'y, are called independent
mutually of Lo. That is, y, does not belong to the subspace L(xo, Lo) which is spun by xo

and Lo.
Theorem 1. If there exist two vectors at least which are independent mutually of Lo,

5



6 Isae SHIMODA

a homogeneous function f,(x) of degree n is a homogeneous polynomial of degree n, where Lo
is a singular subspace of f,(x).
Proof. Let x be an arbitrary point which does not belong to L,. Since f,(x)

Is analytic at x,, we have

a—1 m=0

fix) = l S Mda — Z,hm(x),

where h,(x) = 5= S fwda for m=0,1,2,..- and C is a circle whose
T

am+ 1

radius p>1 and pllx—xol| <d, which is the distance between x, and L,. Since

fulax)=af,(x),

I () = 97mS f(%owd S fn( Xo+x— x0>da.

m+1
a 27i e

Put %2,8, then da:—#d/@ and we have

() = ———S Fo(Baro+z—20) B dB,

. . . . 1
where €' is a circle whose radius is —p*.

Let L(xo, Ly) be the subspace which is spun by x, and L,. By the assumption,
there exists at least a point x which does not belong to L(xo, Ly). If x does not be-
long to L(xo, L), Bxo+x—x, does not belong to Lo, because, if SBxo+x—, € Lo, put
Bro+x—x9 =y, then x=y+(1—p)x, contradicting to that x does not belong to

L(xo, Ly). Therefore, f,(Bxo+x—=o) is analytic in ]B]éu})—, and we have

hm(x) 271’8 f (BQIO'*“-%_xO),Bm - "dB“O for m>n+1.

On the other hand, since Zn(x)="/hn(x0, ¥ —%0), hn(x) is a homogeneous polynomial of
degree n with respect to x—x, and we see that #,(x) is a polynomial of degree m.
As a polynomial of degree m is continuous, /%.(x)=0, even if x€ L(xo, Ly). Then

we have

ﬂ@:%m@

This shows that f.(x) is a polynomial of degree n and we see that f,(x) is analytic
on whole spaces. On the other hand, since f,(x) is homogeneous, that is, f.(ax)=

a'f(x) for x€ Ly, we have fu(ax)=a"f,(x) for every x, because fa(%) is continuous.
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Thus we see that f,(x) is a homogeneous polynomial of degree n®.

Theorem 2. If there exist two vectors xo and yo at least which are independent mutually
of Lo, then there does not exist a reciprocal homogeneous function f_.(x) of degree n, whose
singular subspace is Lo, where n=1,2,3, ....

Proof. Let x, be an arbitrary point which does not belong to L. Since f-.(x)

is analytic at xo, we have

f-n(x) = %hm(xm X — xo)g

where

hm(_xo’ x-—xo) — _l_g f—n(x0+a<x_x0))da’ fOI‘ m_—_- O, 1, 2, 500,

27i am+!
(&

and C is a circle whose radius p>1 and satisfies p|/x—=o|| <d, which is the distance

between x, and L.

1
hm(xo’ X —-—x0> = LS f"‘n<ax0+x—x0>da

27[1 Cxn-}-m-&-l

= 1 S f_n(on +x — xO) Bn+m—1d63
¢’

2l
. . . .1 1
where C’ is a circle whose radius is 7)— and Bz—d-. Then

hm (.’XT(), X — xO) = O’

for m=0,1, 2, --., if x€ L(xo, Lo).

On the other hand, there exists at least two vectors which are independent
mutually of Ly, An(%, x—2%0) =0, from its continuity. Then we have f-,(x)=0.
That is, there do not exist reciprocal homogeneous functions in our cases.

Let L(xo, ¥, Lo) be a subspace spun by xo, ¥, and L,, where x, and y, are in-
dependent mutually of L,. If the space Ey2L(xo, ¥,, Lo), then there do not exist
reciprocal homogenous functions which have L, as their singular subspaces and
homogeneous functions which have L, as their singular subspaces are homogeneous
polynomials. But, when there do not exist two vectors which are independent mu-
tually of a subspace Lo, these theorems are false as the following examples show.

Put x=/(a1, x2), whose norm ||x[|= max (|21, |xz|). Then we have the complex

Banach spaces of 2 dimensions with respect to complex numbers. Put
E
h(x) = x5 e=z.

h(x) is analytic at outside points of the closed linear subspace L; which is defined by

x,=0. Since ax=/(ax:, Ax),
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l_‘ﬁ

hlax) = (axy)"e®=
%
= a"x3e*

= a"h(x).

Thus, we see that i(x) is a homogeneous function of degree n which has a singular
subspace L;. But, A(x) is not a homogeneous polynomial of degree n.

From now on, let L, be a proper closed linear subspace of E; such that E;=
L(xo, L;) for an arbitrary outside point x, of L;.

Theorem 3. Let h(x) be a homogeneous function of degree n whose singular subspace
s L,

(1) If yeLi and i(y)=0, |[hx+ay)||=|a|™0) as |a|—>co, for an awbitrary point

(2) If x€ L and y€ Ly, hu(y, ) =h-(m-n(x, y) and ha(y, ax)=a"ha(y, x), h.(cty, %)
=a" "ha(y, x).

Proof of (1). lim ”/l(x+ay)f|

|| >0 , a] ]w]—»m

i I
h(% +y>jl, since i(x) is analytic at x=y.

Proof of (2). Since y€ Ly, h(x) is analytic at x=y and we have

h(y + ax) = L I (ys )™,

where A,(y, )= —

/ .
271”,8 z(y+ax)da for m=0, 1, 2, --- h.(y, x) is a homogeneous poly-
C

am+ 1

nomial of degree m with respect to x. Clearly, h.(y, ax)=a"h,(y, x).

hm (By, Bx) = 217”8 By + aBx) da

Ctm+ 1

2 S gL 44
27tL

= B hn(y, x).
On the other hand, %.(8y, Bx)=pB"h.(By,x). Then we have

Bmhm (Bys x) = B"llm(}’, x)-

Dividing by 8™, we have h.(By, x)=B""h.(y, x).

Since A(y+ax) is an analytic function of y lying in the outside of L, A.(y, x)
is an analytic function of y lying on the outside of L, by uniform convergence of
the integral. Then A,(y, x) is a homogeneous function of degree n—m whose singu-
lar subspace is Li, if n>m. If n<m, ha(y,x) is a reciprocal homogeneous function

of degree m—n whose singular subspace is L,.
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]lm (y’ x) = 1 S M)da
c

gﬂ]x am-)—l -
L (o Lyes)
= = l\ay *)da
27i T men+¥l
c o

__ 177 ¥ m—-n-1
= 2niS(/ll(By+x)'B dp,

where €' is a circle whose radius is ]cItI and ,6’:*5{, then

T (s %) = ey (%5 ¥).

This completes the proof.

Theorem 4. Let h(x) be a homogenecous function of degree n whose singular subspace
is L. The necessary and sufficient condition that h(x) should be a homogeneous polynomial
is that

ln(x + ay)|| £ K(x, y), as |« tends to 0,

for an arbitrary point x in Ly and an arbitrary point y lying on the outside of L, where
K (x, y) is a positive constant with respect to « and is defined by x and vy.
Proof. If f(x) is a homogeneous polynomial of degree n, 4(x) is continuous and

we have lim [[A(x + ay)|| = ||i(x)||, for arbitrary points x and y.
a—0

Suppose that [A(x+ay)|| LK(x, y) as |« tends to 0, where x is an arbitrary
point of L, and y is an arbitrary point which lies on the outside of L, and K{(x,y)
is a constant with respect to « being defined by x and y. Let f* be an arbitrary

complex valued bounded linear functional in the conjugate space Ei* of Ei,
[f* (h(x + ay)) | L M| h(x + ay)||, where M=|f*|.

For an arbitrary positive number &, there exists a positive number & such that
|h(x+ay)|| £ K(x, y)+&, for |a|<8. Then we have [f*(h(x+ay))| L MK (%, y)+&)
for |a|<8. On the other hand, if |«a|>0, x+ay€ L, and h(x+ay) is an analytic
function of « for |a|>0 and we see that f*(h(x+ cty)) is regular for |a|>0. Thus
we see that a=0 is a removable singular point and f*(h(x+ y)) is regular at a=0.
Since f* is an arbitrary point of the conjugate space Ei*, we see that A(x+ay) is
analytic at a=0?% that is A(x+ay) is G-differentiable at x on L, if y € L;.

Now, if x and y are arbitrary points lying on the outside of I,, there exists
only one complex number «, which satisfies y+aox € L;. Since Ey=L(y, L), there

exists ’ in L, which satisfies x=/"y + s/, where «', 3" are complex numbers. Put

"‘—'Bl'/' =y, y—i—aox:—%, x’ELl. If y+a1xEL1 for (Y1:\:(Y(), y-l—a'.]x—-(y-i-aox):



10 Isae SHIMODA

(tr—ato)x €L, and we have x€ L, contradicting to the assumption x€ L;. Then
h(y + ax) = h(y + aox + (@ — ap) x).

Put y+ apx=x which belongs to L. A(y+ ax)=h(x+ (@ —o)x). This shows that
Wy +ax) is an analytic function of a for |a|<eo. If y€IL; and x€L;, y+ax€ L,
for |a] <co and we see that A(y+ax) is an analytic function of a for |a|<eco if
y does not belong to L. Then we see that i(y+ ax) is an analytic function of «,
if only y€ L, and we have

h(y + ax) = Z:)hm (y, x) a™,
where 7%,(y, x) is a homogeneous polynomial of degree m with respect to x and sat-
isfies

b (y, %) = — — g 4 for m=0,1, 2, ....

27

1 S h(y+ax)da

Since h(y+ax) is analytic for |a|<oo, the radius of the circle C can be taken as

large as we like. Then we have

llen (3, D £ 5 S Wy el g,

0

rm—n

N G R )

e

If m>n, o 2z ||]l(i;izy+x)“
0

rm-n

e
Y S YT
L—\ lim—F—— 4§
271.’ r—>00 ym=n
0
= 0.
Because, lim Hb(e;’y+x)H=Hh(x)H, if €L, and lim Hh(e;—m)yﬂLxHéK(y, x), if x€L,.
Since x is an arbitrary point, we have A,(y, x)=0 for m>n.
Therefore, A(y+ax)= nEh,,, (y, x).
0
é‘,hm(y, x) is a polynomial of degree n. This shows that A(x) is analytic on whole
spaces. If x€ Ly, h(ax)=a"h(x). Since A(x) is analytic, lim lz(ax)=lirr} a*h(x) for
x'€L; and we have

hax) = oa™h(x).
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Thus we see that 4(x) is a homogeneous polynomial of degree n.
Theorem 5. Let h(x) be a homogeneous function of degree n whose singular subspace
is L. The necessary and sufficient condition that h(x) should be a homogeneous polynomial of

degree n is that lim Hﬁiﬁ)” Z K, where K is a constant.
llall—>o0

Rroof. If i(x) is a homogeneous polynomial of degree n, we have sup [[a(x)] <oo.
ll#=1
Then

A _

im ||2 W Z ; co.
B e = i [l £ sum, Il <eo
Suppose that “1[1|m ”ﬁlfﬁl” <K, where K is a constant. Let x be an arbitrary point

of L, and y be an arbitrary point which does not belong to L;. Then, x+ay€L,

(hes)

daaca] P Loty

G

o h(éx-f—y)
=)

=K|l=["

and we have

lfy 1o+ )] = i [

Zlim |a|™-

a—0

*lz+ayll”

since lim H*Lx+ayH=+00. Then Theorem 4 is applicable and we see that the

condition lim ”'}[l(TFHAK is sufficient.
Izl —e

Theorem 6. If h.(x) is an E,—valued homogeneous polynomial of degree n defined on
E, and hn(x) is an Ei—valued homogeneous polynomial of degree m defined on E., then h.(h.(x))
and hn(ho(x)) is a homogeneous polynomial of degree mn, but hu(hn(%)) = hu(ha(%)) generally.
Proof. 7.(Ah.(x)) is clearly an analytic function.

ha(hn (%)) = ho(@™ (%)) = @™l (B (%)),

This shows that A,(h.(x)) is a homogeneous polynomial of degree mn. On the same
way, ha(hn(x)) is a homogeneous polynomial of degree mn.

Let X =<2“ ?2) be a matrix of 2-2-types of complex numbers, and || =
21 22

max (|xn]|, |12, [%21], |%22]). Then the set of such X is complex Banach spaces.

Let f(X)= (3 0) (xll x”) and g(X)= (2 5) (x“ x12> Then

X2y X232/ X21 X22/.

e =5 15 (2 =) s =(,3 ) (2 =)

X21 Xa22 X21 X22/.
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This shows that generally f(g(x))==g(f(x)).

Theorem 7. Let R(x) be a reciprocal homogeneous function whose singular subspace is
L. If E@OHR(x—!—ay)H- |a|" LK (x, y), for an arbitrary point x on L, and an arbitrary
point y which does not belong to Ly, then R(x+y)=R(y).

Proof. For an arbitrary x on L, and an arbitrary y which does not belong to
Li. R(x+ay) is analytic when |a|>0. Then we have

R(x+5) = 3} Ra(® ),

as well as the Laurent expansion of the complex valued function of complex vari-
ables, where

R, (x, y) = 91—-.8 M)da, for m=10, 1, £2, ....
- c

Tl am-’-l
R<—1~— x+ y>
1 a
B0 9) = i S o 4
(&

1

= o

S(”R(éax + y> §YL+M—1dC,

where §:% and C’ is a circle whose radius is /(*(lx{ Since clearly &x+ y €L,
R(Ex+y) is analytic with respect to ¢ for || <ee. Then
R,(x,y) =0, when n+m—12>0.

Since R,(x,y)=0 for an arbitrary y which does not belong to L;, by the analytic
continuation R,(x,y)=0 for all y in E;, where x is arbitrarily fixed. Since x is
arbitrary, R.(x, y)=0 for m>—n+1.

Now, since

1 S
Ry, y) = 5~ SCR(x +ay)a " da,
1

1Rutes DI £ g, | T IRG+ ey r-ma

where a=re®. Thus we have
(2=
a— JO
2%
v S lir(r)l IR(x + ay)| |a]"r-m-nrd@
0 @

27
£ S K(x, y) lim r-»-~d @

0 a—0

=0, if —n>m.

As well as the above case, R,(x, y)=0 for m< —n. Thus we have
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R(x+7y) = Roal 9.

Since x+y €L, Rla(x+y))= *C%;R(x + ).

On the other hand, R(a(x+y))=R(ax+ ay)=R_,(ax, ay) = é,;R_n(a % )
Then we have R(x+y)=R_,(ax, y)=R(ax+y). Since R(ax+y) is analytic as to «,

we have

R(x+y) = lirgl R(x+y) = lil’(l)’l R(ax+y) = R(y).

This completes the proof.
From this theorem,
lim [R(x + @)l = lim [R(ay)]

. 1
= lim T&TnHR(V)H

= 4 oo,
since R(y)=£0.** The order of infinity of R(x) is n.
Let x=(x1, xs) and [[x]|= max (|x:], |%2]). Then the set of x is a complex
Banach spaces £. The 2-valued reciprocal homogeneous function whose singular

subspace is %, =0, defined on £

_ (1
fl@) = < xf O)
satisfies the condition of Theorem 7. The complex valued reciprocal homogeneous

. . . 1 =
function of degree n whose singular subspace is x;=0, defined on £, e € does
2

not satisfy the condition of Theorem 7.

§ 2. Alialytic functions

Let L, be a linear subspace of E).
Theorem 8. If there exist at least two vectors which independent mutually of Lo and
an Eo—valued function f(x) is analytic on the outside of Lo in E., then f(x) is analytic on

whole space F,.
Proof. For an arbitrary point x which does not belong to L, f(ax) is analytic

when |a|>0. As well as the Laurent expansion of the complex valued function

of complex variables, we have
f((’(x) = ?;‘me (x) ™,

where
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falx) = g fc(j,ffl) da, for m=0, &1, +2, ...
(o

By the uniformity of the integral, we see that h,(x) is analytic if x lies on the out-

side of L,. Moreover, we can easily see that
fu(Bx) = B"fu(x), for m=0, £1, £2, .

This shows that h.(x) is a homogeneous function of degree m, whose singular sub-
space is L,, when m is positive, and A,(x) is a reciprocal homogeneous function of
degree (—m), whose singular subspace is L,, when m is a negative integer.

Appealing to Theorem 2, f,(x)=0 if m<0. Then wee have

fl) = %]fm(x)-
Appealing to Theorem I, f.(x) is a homogeneous polynomial of degree m. Put
fau(®)=ha(x). Thus we see that f(x) is a power series, that is f(x)zi‘/zm(x).
0

Let xo be an arbitrary point which does not belong to L,, and d=dis. (xo, Lo).
Since f(x) is analytic at x,, for an arbitrary positive number € there exists a posi-

tive number & which satisfies
[f@@) = fla)ll <& if [l — x|l <8(<d).

Let U(xo, 8) be a set of x which satisfies [[x—w|<<8. On the same way, we have
[ f(x) = fe®x0)]| <&, if x€ U(e” o, 3),

where U(e®xo, 85)/ \Lo=0. Appealing to the covering theorem of Borel, we have

N

6., 0, ---, 0z, such that the set LU(e' ixo, %) includes the set xe® (0L0L27).
1
o
Put M= max (|| f(e®ixo)[ +&), then if x lies in DU (e xo, 8y ),
1sj<k 1
I f) || £ M.

b
When 8, is a small positive number such that 0<8<CMin (-%L) we have

l<jsm

k
e U(xo, &) C D) U(xo€, &), for 0L 0 L 2.
1 .
Then

(] = {%S 119

_ L S £6*5) ol

[ 27 e ]

L M,
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where C is a circle whose radius is 1, for m=0, 1,2, ... and x € U(xo, 8). Appeal-
ing to the lemma of Zorn®, we see that

| (x)|| £ M, when |[x]| <8, for m=0,1,2,3, -
Thus we have

sup hm V ha)| (y)“

llyl|=

= sup lim i’j/ B By H for 0 <8< 8y,
lyll=1 me—reo
1 ns
=5 sup, lim ¥ [[An(3y)Il,
liyll=1 m-—roo
Z % sup lim 2 "M, because || Syl =8 <8,
Iyll=1 m—ea
_
-8

This shows that the radius of analyticity of f(x) is not smaller than & and we see
that f(x) is analytic in the neighbourhood of 0. On the same method, we see that
f(x) is analytic at an arbitrary point of L,. This completes the proof.

Corollary. If a complex valued function f(z1, z2, -+, za) of n—complex variables is re-
gular on the outside of the subspace L(z1, z2, --+, za-2) of (n—2)—dimensions, then f(z1,z2,+++,%n)
is regular on whole spaces.®

Proof. Since f(zy, 23, -++, z,) is regular on the outside of L, f(zy, 2z, -+, za) 18
continuous at the point of the outside of L. Let z=(z, 2, -+, z,) be an arbitrary
point in the outside of L and w=(w,, ws, ---, w,) be an arbitrary point.

f(~+aw) -f(z)

(tﬁO

= lim 2&,:,;@_],3 o Q10s -y 20 QL) — (21, ooy 25 Zia1 + QW;a1, 2, + QW)
a0 i=1 o

— 5 Ofary ey 30)
| 0z;

This shows that f(z1, 22, +--, z2) is G-differentiable on the outside of L. Appealing
to Theorem 8, f(z1, z2, --+, 2,) is analytic on whole spaces. Then f(z1, zs --+, 2,) IS
partially differentiable, because it is G-differentiable, and we see that f(zy, za, -+, 2a)
is regular on whole spaces. If the dimension of L is smaller than n-2, this theorem
is clearly true.

Let exist only one vector which is independent of a subspace L; in E, that
is, E;=IL(x, L;) for an arbitrary point x in the outside of L,.

Theorem 9. If an E;-valued function f(x) defined on the outside of L, in E, is
analytic in E, removing L, and
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Tim | flewp)ll £ K, 9)
Jor an arbitrary point x of L, and an arbitrary y in the outside of L, in E,, where K(x,y)
s a constant as to «, then
[ +y)=F).

Proof. Since y lies in the outside of L;, f(x) is analytic at y and so we have
[y +ax) = %_] i (yy x) %,

1 (y + a
]In(_ys x) = }.Z;Ti f )(/Y'rrkl XI) d
o

«, for n=0,1, 2, -..

Clearly, y+ax€L; and we see that f(y+ax) is analytic for || <eo. By the as-

sumption, lim /| f(y +ax)|| £ K(x, ¥), we have
|l e

I£(r + ax)l| LK(x, y) + 6, for |a| >R,

where & is an arbitrary positive number and a positive number R is determined
by & Since f(y+ax) is continuous on |a| LR, | f(y+ «ax)| is bounded on || £ R.
That is, for a suitable positive number M, we have
| f(y +ax)l| L M, for |a|<LR.
Then we have
(O + ax)|| £ max (M, K(x, y) + & when |« < co.

Appealing to the extended theorem of Liouville, f(y+ ax)=c(x, y), where c(x,y) is
a constant as to a. Then, for =0 and a=1, we have f(y+=x)=f(y).
Since x and y are arbitrary, this completes the proof.

Theorem 10. If an Ex-—valued function f(x) defined on the ouiside of L is analytic

there and satisfies the following inequality
Jim [l £(y + ax)l] LK,

where K is a constant and x is an arbitrary point in Ly and y is an arbitrary outside point
of Ly, then f(y) is a constant.
Proof. Appealing to Theorem 9, we have f(y+x)=f(y), for an arbitrary «

in L, and an arbitrary y in the outside of L;. Then
IFI = Tim IF ) = fim I/ + ax)] £ K.
That is, [|f(y)|| LK. This inequality is true for an arbitrary y in the outside of

L. Since f(By) is analytic for || >0 and | f(By)]| LK for |B]|<oo, B=0 is a

removable singular point. Appealing to the extended theorem of Liouville, we see
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that f(By) =c(y), where c(y) is a constant with respect to 8. On the same way,
since ay+x € L;, for a0, || f(ay+=x)|| LK and then we see that f(ay+x) is a con-
stant with respect to «. Let y, and y, be arbitrary points in the outside of L;.

If y,=y,+Bx for a suitable point x in L, and a suitable complex number 8,

Fl)=Fflys+Bx)=f(y,). If y,%y,+ Bux, since E,=L(y, L), y,=ay,+Bx for suita-
ble complex number «, 8 and a suitable x in L;, where a==1. Then, y,+7(y;—7y,)
:}’2+'Y((X}’z+ Bx — }’2) =vBx + (1+7v(ax— 1))9’2- For v,= T_l_—a, ¥e + '70(:)’1 ‘,’}’2) =
aBx € L. Put y,+7(y; —y,) =%, then y,+%(y;—y5) =% =(Y—") (y;—y;) and we
have y,+ ¥(y; — y2) =20 + (v — %) (y1 — ¥2).  Since y, — ¥, € L1, fly, + 7Y (y;1 — 32)) =
flxo+(v—7,) (y1—1v,)) is constant with respect to ¥—7v, and we have f(y,) = f(y,),
for yY=0 and y=1. From this we can easily see that f(y) is a constant if y€ L.
By the analytic continuation, f(y) in a constant on E;.

Corollary. If an E,-valued function f(x) defined on the outside of L. is analytic
there and satisfies the jfollowing inequality

Ify + ax)]| <K,

Jor an arbitrary x in L, and an arbitrary y in the outside of L,, where K is a constant,

then f(y) is a contant.
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in L; and suitable complex numbers @, 8. Clearly pgx;€ L;, then we have
1
R(Bw1+ay1)=R(ay1)= . R(y1)=0.

Thus we see that R(y)=0 on the outside of L; and we have R(x)=0 on L; by the analytic continu-

ation, contradicting to the fact that R(x) is not a constant.



