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Intreduction

To get a method of map projections is to be regarded to construct a one
to one corespondence between a point on the globular surface and a point on
the given plane.

After all, various kinds of problems of map projections are reduced to
the discussions of mapping functions. Under geometrical interpretations, there
are two methods of map projections, the one is to project the surface to a
developable surface, and then develope it on a plane; the other is to project
to a plane directly. Under analytical considerations there is no distinction
between these two methods, but by the former, we have oftenly more superior
distortionless projections for simpler mapping functions; so the conical or
cylindrical projections have been applied for a long time. In this paper we
wish to consider the generalization of development projections. As their
computations are not so simple, it is not always prospective to get some practical
ones usually; but in the special cases, there are some expectations to get
useful projections by these methods. Then we wish to explain for general

theories on the generalized projections.

§1. Isemetric Coordinate Systems en a Tangent Surface of a Given Curve.

Put the equations of a space curve to
=2a%s) ((=1,2,3) e (1)
where the parameter ¢ means the arc length of the curve measured from a
given point.
Then the equations of a tangent line at a point on the curve are given by
X8 = x83) +£a(8) D, e (2)

where X's mean the current coordinates and 7/ is a parameter which means
the distance from the tangent point to any point on the tangent line, and a's

mean the direction cosines of the tangent line.
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If we consider ¢ and # two independent variables in the equations (2),
(2) represents the tangent surface of the curve (1). To obtain the fundamental
magnitudes of (2), we consider the equations

_f:/{Bt, Za”ﬂi:O, (3)

where B%s mean the direction cosines of the principal normal of the curve (1),
and « means the curvature of the curve at the tangent point on it.

Differentiating (2), with respect to ¢ and ¢, we have

i i
a,X = o+ 13, £ = at,
04 ¢

then we have

£V
=(@Y-1 =) -1

Then the line element of (2) is given by
ds? = dPP +2dt de+ (L +1%°) d.g®,  covvrermemeeinnns (4)

A v 2
R <6X> = SV + 2k D B+ 3 B = 1+17%7

where « is a function of .

In the equations (4) ¢ and < are not the parameters for isometric coordinate
systems, so we wish to get an isometric coordinate system on it from the
equation (4). Deforming (4), we have

ds? = {dt + (1 +ite)d s} {dt +(1—itc)d s}
then we put
dt+(1+it)ds to pdxn, and dt+(1—itx)ds to gdp. -+ (5)

In (5) p and ¢ mean the integrating factors of the expression, so we have

from the integration of (5),

7

o log (1+t*«*

A= <% tan™! t/c+a> +
1 il J 2,2
/ﬁ:<ftan t/c+<s>—-1og(1+z‘/c
i 2K
Putting the real and imaginary parts of the above to ¥ and y we have

A= 1 tan"tfe+9, Yy = 1 log (L41£262) . covverneneeenes (6)
K© 2/6

Then the equation (4) is reduced to

ds? = (L++23)(dx +dy?) . o (7)
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In (7) parameters x and y are evidently isometric.

Then we have easily some conformal projections between the globular
surface and the surface (2), applying the theories of functions of a complex
variable. Developing the surface (2) to a plane, we have some new conformal
projections of the earth.

§2. Envelope along a Given Curve on the Surface.
Put the equations of a given surface to
x = x(u ) Yy = (u0) 2=2(U D), e (8)

then the equation of the tangent plane at the point (x,y,2,) on it is expres-
sible to

X—x, Y—y, Z—2z,|=0,  «erriinnnn (9)
Xy Yu 2y
Xy Yy 2y

where X, Y, Z, are current coordinates and x,, y,, etc. are partial derivatives
of x and ¥ with respect to # and v.
Specially, if (8) represent a surface of revolution, they are given by

x=p@)cosu y=p@)sinu 2=qv), e (10)

in (10) p(v), q(v) are arbitrary functions of v.
Then the equation (9) is reducible to

Xqcosu+Ygsinu—2Zp = (pg—pq). eeoeeeeeeeenn (11)

Similarly, if the equations (8) represent a sphere, they are given by
x=sinvcosu y=sinvsinu 2=COSV, rrrrreere (12)
then (9) is reducible to
Xcosucosv4+Ysinucosv4+Zsinv=1.  ovevenn. (13)

If we consider » as a function of # in (11) and (13), they are equations
of one parameter family of planes. Then these planes decide an envelope, of
course, it is a developable surface.

If we can put the equation (11) or (13) to the form (2), it is able to deter-
mine an isometric coordinate system on it by the method explained in §1.

To do so, we must determine the equation of edge of regression of the
surface.

If the equation of family of planes involving a parametes ¢ is given by
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a(t)x+b(t)y+c(t)z+d(t) :O, .................. (]_4)

the equation of edge of regression of the family is obtained by solving x,y, 2
as functions of # from (14) and the followings,

a)x +b()y +cB)z+d(E) =0  a®)x4+bt)y +c(t)z+d(t) =0,

where a(t), a(¢), etc. mean the first and second derivatives of the coefficients
with respect to f.

In this paper, for convenience of computations, we shall start from the
equation (13).

From (13), describing the equations corresponding to the above three

equations, we have,

Xcosucusv+Ysinu cosv+Zsiny =1
X (sin # cos v +cos u sins v.0') + Y (— cos # cos v +sins # sins v.0") —Z cosv.0" =0
X(2sin u sins v.0’ —cos # sins v.0”) 4+ Y (—2 cos u sins v.0’ —sin # sins v.0")

+Z(cosv.w” +sins o) = 02 +1, (15)

where v/, v” mean the first and second derivatives of v with respect to #.

Solving (15) with respect to x,y, 2z, we have

X — sin #.0/ (Cos?v +v’) +cos % cos v (sin v.0”* +cos v.0")
sin v (cos®v 4 v’?) +(sin v.0"* +cos v.0")

y _ —Ccos u.v’ (cos® v +v"*) +sinu cos v (sin v.0"* +cos v.0")
sin v (cos’ v +v’*) +(sin 0.0’ +cos v.0")

__(cos’v+v*)+sin v (sinv.v* +cosv0”) (16)
sin v (cos?v +v'%) 4 (sin 0.0’  +cos v.0”)

As the equation (16) involving a parameter #, they represent the edge of
regression of envelope of the family of planes (13).
Introducing m from the equation

Sin 0.0”° +C0s 0.0” = M(COS*V +1?),  oovrreriieiens (17)
the equations (16) are reducible to

X_sin u.v' +m COS U COS U y — —C0s u.v'+msin# cos v

sin v +m sinv +m

1 .
7 — -'f-mSII’ll)
SIv-—+m

As m and v are functions of #; X, Y, and Z in (18) represent the func-
tions involving the paramater #, so they are considered the equations of the
space curve in §1.

Then by the method explained in §1, we can determine an isometric
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coordinate system on the tangent surface of (18). In generally the parameter
u is not the arc length of the curve (18), but by suitable transformation of
variable, we can introduce the variable s on it, and determine the derivatives
Xs,Y, and Z,.

It is not so simple to solve the equation (17), the form of the equation
of the tangent surface is not very practical, in generally. But when m takes
some special functions of #, it is solved very simply, and the results are very
practical.

§3. Solution of the Differential Equation sin v.2'? + cos v.v” = m(cos’v +v'?).
Transforming the equation to the form

d*v
du?

dv\?

COS v du) = COS Y,  crreeeeeieieeeaes (19)

+(sin v-—m)<

it is evident that the independent variable # is not contained explicitly in it.

. dv d*v . dp . .
Putting Tu to p, T s reduced to p%, so the equation (19) is deformed to

g§+<tanv—c07:v>p :%COSU 5 0oo0000D00GRna0000s (20)

As the equation (20) is a Bernoulli’s type, so it is solved to the form

. —2&<tanv— m )dv 25(tanu~ m >d0
pP=2e Cel {mjcos ve e dv+c}. ------ (21)

From (21) v is determined as a function of #, by the relation v _

du
The expression of (21) is not so simple to determine v easily. Then we shall

consider some special cases, in which » is determined simply.

[A] m=0

The equation (19) is reduced to

%zv 1 Ev 2'—- ..................
cosvd 2+'smv<d>_0, (22)
and then (20) is reduced to

dp — 0. e,

/ +tanvp =0. (23)

Then from (21) we have

p? = 26(’—_2‘[ tan vdv — [ tan vdv

............ (24) then p =ce
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However ﬂtan vdy = —log cos v, so we have from (25),
AV _ o L0ZCOSY_ s p  eeeeeeeeeeeenenn,
-d—u_p_ce =CCosv. (26)
Integrating (26) we have
v 7r — M 000 esssessresssaas e
log tan <Q' +T> =cu. (27)

So in the case of m =0, the envelope of the family of planes (13)
tangents to the globular surface along a loxodrome on it®. So we shall deter-
mine the equation ot edge of regression in these cases.

In (18), replacing m = 0 and 2’ = ¢ cos v, we have

x_csinucosv y  —ccosucosv L 1 28)

sinv sinv " sinv’

c{cosu cos v sinv—csin# cos v
From (28), we have X, = { }

sin®v
y _ ¢{sinucosv sin v +c¢ cos # cos v} 7 ¢ cos’v 29
I = = ——3 , e ( )
sin®v sinZo
2 2 2
v(l4c
LIS e X3+ Y342 =00 204,

Now transforming the independent variable u to the arc length 4, we have

o3 A ¢\ 1+¢? du
SXE YR 2R T =2 COoS U o =
e nt L sin®v das

then we get de _  sin’o (30)

ds  ¢\/1tc*cosv’
From (30) the direction cosines of the tangent line at a given point on

the edge of regression are given by the followings.

_dx _dxdu _cosusinv—csinu

ST T duds Vigc
sinu sin v +c¢ cos % cos v
e @, = e 31
Y NAER NAEWX (1)

From (31), differentiating «s with respect to s we have the direction
cosines of the principal normal at the same point.
From the relations

da de, du — [da,\?
e E—— by z . teseresesasasesane
ds du ds’ J“‘ < ds> * (32)
and da, = k8., e (33)
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replacing the relation (30) to % in (32) and (33), we have
sin®v
=_ > 7 d
= evTicicos v an
=1 . . 1 D .
(S i (sinu# +ccosusinv), B,= T (cos u —c sin u sin v)
[S— il -(ccosv)y, (35)

V14c?
where « is the curvature of the edge of regression at the same point.
For these relations above, we can determine an isometric coordinate
system on the envelope surface by the method explained in §1.
[B] m=sinv
The equation (20) is reducible to

dp _ sinp cos

- 75— (36)
Integrating (36) we have
Pr= 2& sin v cos vdv 4 ¢ = sin*v 4-¢
and then it follows that
= ++/sinv+c, —d—UZ:!:v/m and du = _L. -+ (37)
du +/sin’v+c

Generally, the integral of (37) is reducible to an elliptic integral, excepting
the case where ¢ =0; in the later case we have from (37) g—z = 4sinv, so

the integral is reducible to logtan % = Fu4c.

So it is to say, that in the case where ¢ = 0, the integral is reducible to
the case explained in [AT.

Conclusions

In this paper we have discussed only the case where the envelope surface
tangents to the globular surface along a loxodrome on it, and did not refer
to the cases, where m takes an arbitrary function. In the cases, where the
globular surface is considered an ellipsoid of revolution, we refered nothing
in the present paper, so we wish to discuss the leaved cases in the next
chance.
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