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In the previous note,” we had found, as a particular solution of the
differential equation
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In the present note, we shall discuss the general solution of the differential
equation, rather more generalized than (1), and the properties of the functions
V.(z), which appear very similar to those of Bessel functions J,(z).

Although the differential equation (1) can be classified into the Bessel’s
equation in a broader sense,” yet its form is surely different from the ordinary

2 2
Bessel equation d_y +—1~ LA + (1—" )y = 0. So we venture to treat it below.
dz*  z dz 2?

D This Journal, Vol. IV (1954), p. 39, Y. Watanabe and M. Nakamura, On the Partial Differential
Equation of Paraboric Type with Constant Coefficients.

2 Cf. e. g. Whittaker and Watson, Modern Analysis, 3rd Edition, p. 203-4. Namely, the diffierential
equation of the form
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where A=(21047)2— th%—%zwﬁ—f’s and B, C are constants, is called the generalized Lamé’s
r= r=1 r=1

equation. This differential equation has every point in the whole (-plane, except a,, a,, as, a,, and

<o, as an ordinary point, these five points being all regular points with exponents «,, wf+§ at

a, (r=1,2,3,4) and g, /H*% at o>, If we make two or more of these five singular points to tend

to coincidence, we obtain thereby the so-called confluent equations. Among them, there is such a type
which has only one regular, and only one irregular singularity, and else everywhere as ordinary behaves,
and its type is called the (generalized) Bessel’s equation. In this broader definition, no doubt, our
present modified cosine function belongs to the (generalized) Bessel’s functions. Therefore it will be
more preferable to discuss more generally the Bessel equation in this broader sence. However we
reserve this problem as a further task.
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§1. We consider the differential equation of the form (1), but now #
n

being not necessarily confined as a positive integer:

zgzy —2nz gy + (¥ +2m)y =0,

whose singularity occurs regularly at z =0 but irregularly at 2 =<c®. Let
us find its formal solution

y = Z CZVZ‘H” ,
V=0

where the index «a and coefficients a,’s are to be determined. Substituting in

the differential equation, we get

S [{(u+a)(u+a——1)—2n(u+af)+2n} a,,+avﬁ2] 22v=0.

Equating coefficients of successive powers of z to zero, we obtain

(U—}—a"zn)(l)—i-a—‘l)av"'av—z:o <Zf£’é:2’ 0) (3)

a_, =
So for v =0
(a—2n)(ae—1)a,=0.
Hence the indicial equation has the roots « = 2% and 1.
Firstly, taking « = 2x, we obtain the recurring formula

vir+2n—1a,+a, ,=0, i.e, a, = —

Hence, except 2n—1=mnegative even, —2q say, we get for v = 2m

—Qym_, Aom_ 4
2m(2m +2n— 1) 2*m(m—1)(2m +2n—1)(2m +2n—3)
e DM@ ) Dt 4+ 1) <m—_—1,2,---)

lmI’(n+1) I'(2m+2n+1) n=%:—f1+%

az"b

_ T'(n+1) (—

27 (—2)* reduces to
C I'(2n4-1)

which on putting «,

(=)™ I'm+n+1)2"

|m I'(2m +2n41)

om —

For the sake of convenience®” we may assume all a,,., =0 (m=0,1,...),

1 d*y 2(n+1) d 1+2nzl
% Writing z = -, the equation (1) becomes azjé—!— 2 d: z%
ficient of ¥ has a pole of order 4 at 2z, =0, i.e. at z= co, hence there the equation is irregular (Un-
bestimmtheitsstelle).
# Moreover, if n is neither negative integer nor 0, jt is necessarily all @,,., =0, because, then
we should have by (3) 2na, =0, as well as (2m+1) 2(m+n) @Gmii+amm-_1=0, (n=1,2,3, ).

=0, and thus the coef-
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since they are quite independent of «,, and surely satisfy the relation (3).
Thus in case 2n—1== —2¢ (even negative), we obtain, as the first particular
solution, an infinite series V,(2):

_ o< (=)™ Tman+l) _om 4
¥, =V (2) = (— Zz)mz"o |m F(2m+2n+1)z’ )

which is equal to [di; (cos V1+2¢ z)]{ , only when # is a positive integer

or zero®.
Next, taking the second root « = 1, we obtain another recurring formula

viv—2n+1)a,+a, ,=0,
which can be availed for even » if 22—1 be not positive even. Thus we get

‘—azm 2 (—1)”1
T om@m—2n+1) 2’"‘|m(2m 2n+1)(2m— 2n 1) oo (—20+3)°

m

Hence, on putting again all «,,., =0, we obtain, as the second particular
solution,

(__1)m 2mt-1
2" \m(2m—2n+1)2m—2n—1) .- (—2n+3)

i} <n:#q+l>. (5)

2

But if # is a positive integer, we have
1

[ IR e F W L

3
—r o (_1)m S I’ m+_>2l é‘l—n
_lmg”zm“z Zr(< zi2> = n]: o

i( n” 2m+1)(2m—1) --- Cm—2n43) 2°™". (6)
m== 0]2m 1

Now, in order to equalize (5) and (6), we put the reserved constant

(=1 2n—2

=t >, (7)

a, —

% Even though we take the Riemann-Liouville’s fractional derivative, e. g. of order n=1-g,
0<_a<1, formally we get
( ]_)mZZm. m @21 I

D" cos VIT2(z = DI* 3 DI* T(1+1)

m=0

(- 1)777 22m (L2 =

2m m= 0 i2m i=olm—1
co ( 1)m22m m Jﬂ_l chz-un 1
TaZe lem Zom—i T(Ita)

|

To put here { =0, it is no more than to obtain an absurd result

w (—1)m (o1 ] . )
P PN S = indeterminatc.
[m=0 [2m 1—'(“) {0
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then the expression (5) just coincides with (6). Really, by division of the
corresponding summands, we get

2 e D o 1y @em—1) - @m—2n+3
2" m(2m—2n+1) - (~2n+3) Zm+ 1 Cm+1)2m—1) - 2m—2n+3)
a, 2m+1

=24--2m@2m+1)2m—1)---Cm—2n+3)2m—2n+1)---3-1(—1)(—3)---(—21n+3)
_(=)y*i2n—-2 2*'|jn—-1 _
on1 MZ— (=1)* ' 12n—2

It is noteworthy to observe that the number of the linear factors in the
denominator of summand in (5) is just m, so that it is available irrespectively
whether # is a positive integer or not. However, in (6), the number of the
linear factors in the numerator of summand is exactly #, and consequently
(6) is not legitimate unless # is a positive integer. Hence, in general, we
adopt the former and put

U,(2) = (,,7)” Y(2n—1) & (—1ym z2mr )
" 2 I(n)  #=02™ m(2m—2n+1)(2m—2n—1) --- (—2n+3)

which gives another particular solution, if n—%q:q (positive integer).

Thus, for any real n, except some trivial cases, we have obtained, as
two particular solutions V,(z) and U,(z), generally independent of each other.
In particular, when # is a positive integer, the two series V,(2) and U,2)
becomes

Vi(2) _ d"® cos
U,(2) [dg'" sin (\/1+2§z)] -’ (9)

and might be called modified cosine- and modified sine- functions respectively.
Surely they are independent of each other, as one is even function while the
other is odd. Generally the general solution of (1) is given by
y = AV (2)+BU,?), (10)

where A and B are arbitrary constants. Of course, to say more exactly we
have to examine several exceptional cases more minutely, and to secure valid
solutions. The exceptional cases may occur when the difference of exponents
2n—1 becomes an integer or zero. E.g. in the latter case we have n = %,
and our series then become coincident:

- (~1)”‘""§’ I’<m+i

Uy2) = Vyz) =3 2) 2t
3 2 m=0 “n F(‘)m+2)

—oB (2 e,

m-0 (|7n)2
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thus it reduces to the Bessel function of order 0 multiplied with 2. How-
ever, we reserve the discussion of all such special cases for future, and presently
mainly confining to the case that # is a positive integer, and also rather
laying stress upon V,(z), we proceed to deduce their properties.

§ 2. In the previous note®, it was seen that the relations

Vn(z) _ Vn/(z)

2* z

—V, (2), i.e (%mz))':—vn,l(z) (11)

and
Vn//(z) et Vn(z) = —2n Vn— 1(z) (12)
hold.

From (11) and (12) immediately follows
4[/71_1,1(2)-{'(2”—1) I/W(Z)—*—ZZ Vw41(z) == 0 ) (13)

and further this combined with (11) gives

V.(2) = 2n V”(z),_p,YZ’j;Lz), ,
z 2
and also
d (Vi) _ Vani(2) 14
dZ { 2n >_ 21 * ( )

Since the form as the infinite series is invariable, whatever » may be,
integral or fractional, all the above identities still hold even for non-positive
integral #, so far as they exist.

Also if n >0, lim V,(2) = o(1) = o(z2*""*) (&>0)

1

and if n_> 5 lim V,/(2) = o(1) = o(z** "' "%).

§3. Now we shall prove the theorem that V,(z2) with #» >0 has infinitely
many real roots and moreover between any two consecutive real zeros of
V.(2), there lies one and only one zero of V,, . (2). Since V,(z) is an even
function, its real zero-points, if any besides z =0, should occur in pair of
opposite signs with equal absolute value, so that we may only conceive its
positive roots.

We prove the theorem by mathematical induction. At first for V (2)
=cosz and V,(2)= —zsinz the theorem is evident. Next let us assume
that V,(2) =0 and hence V,(2)/z”® =0 has infinitely many (discrete) roots,

® loc. cip. p. 41,
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In view of (14) together with Rolle’s theorem, it follows that between each
consecutive pair of zeros of V,(z)/z** there is at least one zero of V.  (z)/z*""*
Similarly, from (11) it follows that between each consecutive pair of zeros of
V..,(2) and hence of V,.,(2)/z, there is at least one zero of V,(z). Therefore
the theorem is true for V, ,(2), if it is true for V,(z). Hence it holds in

general.

§4. To give another proof of the preceding theorem, we ready” an

integral representation of V, (x): When 0< n<1, x = 7—75;, it holds that

V(7o (—1)y [v<n+%> n?n%@ 7 cos%t . 5
77(? ) - [’(271) 2" So (92_t2)1—n : ( )

To prove this, let us transform the integral

T
[ A
o (62_ t2)1~n

by putting ¢ =0+/’s, as follows.
7 Sl 1 = (__1)111.7 <£ €>2m o Ods

0 6’2(1””(1——5)1_"711:0 Lzm 2 2\/?
1 7—1 % (_1)m <7z >2mj-1 n—1 m—1
=50 —0 1— :d
2 7?40 |2m 2 0( S) S S
But, as
B(n, m+%> _ ©Cm—1)(2m—3) - 3/ 7 )

T @n+2m—1)2n+2m—3) - (2n+1)p<n+ 1 )

so becomes

I

_T@ra1) 27 & (=) D41 2" <1 e)mm

nﬂf(n—i—é) oo =0 [m T(2m+2n+1) \2

)

_1yp o — V. (%0
)l

2
whence (15) is proved.
As the coefficient C(n, 6) does not vanish in 0< < e, the vanishing of

K(%&) and that of the integral take place at the same time. Hence we have

only to consider the change of the sign of the integral:

™ Y, Watanabe, Uber die Verschiebung der Nullstellen usw., this Journal, vol. III (1953), p. 16.
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T
o COS =1

nV"(i’,e —s S__—z__dt
Sg 2 ) gn 0 (az_tZ)l—n

Divide the whole integration interval 0< #< o at the points £ =0,1,2, -
1

(92_[2)1-”

positive integer ¢

The function being monotonously increasing, if we put for any

iq CA42 2
S — vzq . 5 = —-1)2(1%71 s
49-2 4q

it is clear that all », are positive and moreover v, increases with p. Hence,

0 COSzl‘ 2pta 2 4 2p 2P
Lamgmtt={, =+l
o (BF—1£2) 0 0 2 2p—2 2p

= =0, +0U,— - +(_1)p Z)p+(_1)p Z}p/;

if we write

then

sgn Vn<7r<p+%>> = sgn [—vl+z)2—va+ e (=D v, 4+ (—1)” v,,’] ,
where 0<v,<v,<-+<v,, and also 2,/ >0 if 0<Ta<1l.
Therefore, according as p=even =2q or p=odd=2q+1,

sgn Vn<”<ZQ+%>> = Sgn[véq'*'(vzq—vzq—l)"*‘ +(7)2—Z)1)] =+,
sgn Vn<7t<2q+1+%)) = sgn l—véq e CI O Ly —(Ua—vz)_v1] — —,

Thus the change of sign of V,(x) in 0< x< o happens an infinitely many
times. The result just proved is obtained for the case O0<_#n< 1. However,
it can be proved for the case 1< n<2, 2< n<_3, -, in the same way as
done in § 3.

§5. Now we shall prove an integral theorem, which resembles to that
of Lommel in regard to Bessel function. Let « and B3 be some different
parameters 0. Writing 2z = ax in (1), we have

d*y 2n dy ( 2n>
— = @+ =0,
dx* x dx x* Y

one solution of which is obviously V,(ax) and consequently

d*V(ax) 2n dV,(ax) ( 2n -
dx? x dx @+ )V,,(atx) 0.

Similarly

d*V,(3x) _2n dV,(57) ( ,é)v,,wwo
=
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Multiplying the former by V,(8x) and the latter by V,(ax) respectively, and
then subtructing side by side, we get

du 20y (ar— B7) V(ax)V,(Bx) =0,
dx x

where

u = V,(Bx) ch,}(xax) Va (ax) (,Bx)

Multiplying the differential equation just obtained by x~*, and integrating, it

yields
[£] = ~@-s{ L vanviends.
Since lim V"Ef) = finite, and d—?@ vanishes at 2 =0 for n>%ﬁ, so also
< 2
vanishes at x =0 (and this is also true for # =0, because of V/(z)

xzn

—sin 2). Thus the integrated part reduces to

[x” ] = VulB) V() — V@) Vi (B) .

Consequently we have (at least, when n = positive integer or 0)

gl M/‘?ﬂ dx = aZ.l_BZ {Vn(“) I/n,(ﬂ)— Vn(ﬁ) ‘/nl(“)} (a:i:B) : (16)

on
X

If we make 3 tend to «, the right-handed side of (16) becomes an indeter-
minate form «%. However, on using 1’Hospital’s rule, and referring to (1)

and (11), we can easily find the limiting value to be

5 Vlax) 4, 2105 (Vi) — V(@) Vi (@)} = 21; (V@) + V@) +2nVi(c) Vi (c0)}

x 2n

_ Zi“ {(1+ LYVu@r V@ + 20— Vi@ Vo (@}, D

§6. By use of the foregoing theorem, we can prove that V,(z) =0 has
really real roots only. For, in the integral theorem (16), 7. e.

! V'n(ax) ‘/n(/gx) dx —

(@—g) | A V(@) V/(8)— VB V()

0

let @ =§&+1iy be any roots of V,(2) =0, then 8 =E&—iy should be so also,
because the expansion (2) of V,(z) has only real coefficients. Accordingly

[(5_*_1'7])2__(5_41'7])2] S; Vz((§+lﬁ)x) Vn((&"‘iﬁ)x) dx = 0.

2n
X
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Here the integrand has the form

L (PriQr—iq =L+ >0,

on on
X X

and P’+@° cannot be O throughout any subinterval. Therefore the above
integral is surely positive. Hence the multiplied factor 4£# must vanish, so
that £ =0 or » =0, 7.e. the root must be pure imaginary or pure real. But

it is evident that

V(tni) = wom~q (=)™ mAR 5y com

n = 1 2 e (_*f_f. v 21 am

R lm |2(m +n) =
m lm+n

27} 2m ™ 0,
Eim2min)” " 7

=7

Hence there is no pure imaginary root. Therefore any possible roots should
be purely real, and really they exist as already shown in §§ 3, 4.

§7. We shall expand an arbitrary function f(x), which is L(0,1), in a
series of V,(2) in the form

f@) =31 A, Val\, %), (18)

where 0< A, <A, <+ < A. < -+ denote real positive roots of V,(2) =0. To
determine a coeflicient A,, we multiply both members of (18) by V,(Ax)/x** and
integrate from x =0 to x = 1. Then by virtue of (16) and (17) we obtain
[ VoS0 gy [ s1= 514, (" L0 Vitrn) do
0 X% o 7 - o x%"
= 1 ANV 0}

Hence
1

As :2S1 men(Mx)f(x) dx/xs{Vn—l(k's)}Z; (S:1; 2; 3; ) (19)
o X
For instance, if # =1, we get

A = -2 Sl % s7x sin (s7x)-f (x) dx/s/—z(cos s7)?
1 1 .
= ——ZS ~sin (s7zx) f(x)dx .
o X

8 We have tacitly assumed that f(x) is coutinuous throughout the interval (0, 1). It can be
proved more rigorously in just the same manner as shown by Hobson (Proc. London Math. Soc. 2,
vol. VII, 1909, p.p. 387-8, or Watson, Theory of Bessel functions 1922, p. 591.), that if f(x) is
absolutely integrable and of bounded variation in (0, 1), then the series is convergent and its sum is

1
2 Sl F0) Hf(x—-00).
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§ 8. Lastly we shall prove that the two functions V,(2) and U,(z) are
connected by the relation
Un(2)Va_1(2) = U,_,(2) Vi(2) = 2" (n>1). (20)
For, since U,(2) and V,(2) satisfy the differential equation (1), we have

22U, (2)—2n2U,/(2) + (22 +2n) U,(2) =0,
22V (2)—2nzV,/(2) + (22 +2n) Vu(2) =0,
and whence

2 U, (2) Va(2) — Un(2) Vi(2)) —2n2(U, (2) Va(2) — Un(2) V' (2)) = 0,
that is
% ((]n/(z) V;l(z)_ ljn(z) Vn/(z)) = 2—: (U;,’(Z) V,,(Z)— UV,E(Z) Vn/(z)) G

On integrating we get
U/ (2) Va(2) — Un(2) Vi/(2) = C2*" .

Substituting in the left handed side the value (11) of V,/(z) and similar one
about U,/(z), which can be easily shown from the expansion (6) or (8), we get

Unl2) Var(2)— Un_,(2) Val2) = Cz7.

To determine the value of C, we have only to find

lim [M Vo () V,,(z)];

250 z zZCn—l) z2n-1

But it is easy to see that the limiting value becomes 1, by means of (4) (6)
and (8), which proves (20).



