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These are practically frequently of use. It is said that K. Pearson an-
swered it by the superposition of his fundamental unimodal specimen curves.
However, as I could neither find such essays 1 the back numbers of
Biometrika® nor have the opportunity to search other references, e.g. Metron,
Phil. Mag., Phil. Trans. &c., so it is tried to construct several new bimodal
curves in the cases: (i) the distribution is in both sides unlimited, (ii) only
in one side limited, (iii) in both sides limited.

§ 1. The differential equation® of frequency curves in the most general
form shall be given by

ic_lz_ao+alx+a2x2+......
ydx by+bx+b,x" 4

which, however, is too extensive to be treated here. To get simply bimodal
curves, it is sufficient to assume that they become minimum at origin, and
maximum at two other (oppositely lying) points, so that the required D.E.
reduces merely to

1dy_ax+ax’+ax’ (1)
ydx  b,+bx+bx*’

where the numerator is to have real roots of different signs besides O.

(i) The case, where the distribution is in both sides umlimited. In this
case the denominator in (1) must not have any real root, so that, for the sake

of brevity, we may assume the denominator simply to be 1:

L Although the present work is not so refined theoretically, the author aimed to utilize it as the
stuff of exercise on mechanical computations for students: E. g. On the Decomposition of a bimodal
Distribution into two normal Curves, T. Kudé and others, which, however, as has been not yet com-
pleted, would be published in the next number of this Journal.

2> Except the only one: Sui massimi delle curve dimorfiche, Dal Dr. Fernando de Helguero,
Roma, Biometrika, vol. III (1904), p. 84,— which, however, does not go into details.

o . 1 dy
3 As well known, Pearson, starting from a problem of a game, adopts only the form — dy

=, Gt N G BTt L e T e
= bUf]»bleIhbzxZ , as e B . 0 11S Tundamenta 1striputions.
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%% =ax+a,x"+a,x’. I

We get, therefore,

1 1 1
Ioglzgax2+fax3+~ax*, v
C 2! 377 47 ) x
i.e. y = Cexp {ax’+bx* +cx'} . Fig. 1

Or, upon taking the mean value % as origin, and writing x—%=w, we have
y=29,e* with @)= cu+cu’+cu’+cu", (2)

where, under assumption, ¢’(#) should have 3 real roots and ¢, < 0.
Now, in order to determine the constants in (2), we avail the moments

formulas :
Sw yog“’(“)du:/_l,ozl, Sm youneﬂu)du::u'n n=12,-), (3)

in which numerical values of y, can be obtained from actual statistics, though
the integrals themselves are not expressible in finite formes. So I make shift
with the following treatment in a somewhat Pearson-like manner.

Firstly, integrating (3) by parts, we obtain

L e R A S

in which the integrated parts become zero as c¢,< 0 by assumption, and the
remaining integral can be expressed in terms of moments, so as

(M) ey = —Cypon ), —2C, by s —3Cspn 4 . Y

Putting here #=0,1,2,3 and observing that ux,=1, p, =0, we get

0 +2c,m,+3c,pp,+4c,8, = —1, ‘
Cofby +2C, by +3C,m, +4c,p; = 0 | (4)
Cofby +2C, 0, +3C, s +4C, g = — 31, , [
Copby +2¢, 5 +3C, g +4C, o, = —4p,, )

from which the four unknowns c¢,,c,, ¢,, ¢, can be determined. Substituted

these values in (2) and (3), it gives

S exp {cu+cu*+c,u’ +cu'tdu = -:L ,

0

whence by numerical computation the value of y, could be found. Since
¢,< 0 and the exponential tends rapidly to zero, we might execute the
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mechanical integration simply between =+ L (numerically pretty large) instead
of +oo.

Example. A symmetrical distribution is given as in the second column
of the following Table. Required to find the frequency curve.

x ! y x%y I 2y xy

0 0.0690 0 | 0 0
+1 0.0819 0.082 ‘ 0.08 0.1
42 0.1210 0.484 3 1.94 7.7

|
- 0.1553 1.398 J 12.58 113.2
44 0.0952 1.523 : 2437 389.9
+5 0.0120 0.300 750 187.5
=6 0.0001 0.004 ) 013 47
sum l 1.0000=p, 7.582=p, { 93.20=p, 1406.2= 1,

By reason of symmetry we may assume the distribution to be y =y,
exp (¢c,x*+c,x*), and accordingly moments of odd order = 0. Substituting the
values of moments acquired from the above Table in (4), we find that ¢,=0.181,
¢, = —0.010 and directly y, = 0.069. Hence the required distribution is given
by y = 0.069 exp (0.18x*—0.01x*), roughly.

As done above, the actual moments u, are usually computed by summa-
tions, but to speak more exactly, they need Sheppard’s corrections, as well
known, and this is so, not only for » =2 and 4, but also for »~>4. In
general, if the ficticious and true moment of order # about y-axis are v, and

v, respectively, i.e.

W =S, = flaads,
we have, in the case that y = f(x) highly osculates x-axis,

v, =,/ 3‘41z(n Ly, _, 5'42n(n D(n—2)n—3)v,_— - ,

where w = breadth of class taken in summation; and thus

v, =v,=1, v,=v =d, vzzvg’—g, Vszusl‘“wzz , n=v %Zuz g)(;’
v, =v,’ %w2u3~—%d, Vﬁ—‘JS/—%sz4—%w4l’z—1rz70§27

u7:y7’—%w 1/5—17620“1)3-%92(1; Vs:”z/_%wgy”w ;"”’4”1“'61%”2“2384’

b v Buts, 28”"‘ ”*’136” j_%‘%d) ......
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So the higher the order of moment, the larger the correction. In particular,
if the origin be the mean, v, and »,’ become z, and u,’, the moments about
mean, respectively. Notwithstanding the above correction formulas hold the
same and become even simpler, because p, = p,’=d reduces to zero.

If we make Sheppard’s correction in the preceding example, we obtain
o ="7.499, u,=89.47, and p,=—1293.0 (though this is really of no use in the
present case), so that the results become ¢,=0.210, ¢,= —0.012 and y=0.069
exp (0.21x*—0.012x*), thus pretty differ from those obtained before.

(ii) The case, where the left handed side is limited, but the other side
unlimited. Assuming that the distribution extends from x = —¢ (negative) to
x =co, the D.E. (1) can be written in the form

ldy ax+a,x*+ax _«}r(x)) 0 bl B
jdx“‘ Xtoy (Mx-}-ry ’ '}’./0) Jr( r‘y):F—O,d3<O,d1>O.

This yields after integration ¥
¥y =Fkexp {ax+0x"+cx’} «(x+)" ",

where a = a,—ay+a, " =Y(—q)/—y=+F0,

b:l(az-—aw),c-:_ﬁ3 and —ay > -—1."
2 3 x

]

Or, if we take x = —q as origin, and put ~7

x = X—v, then the equation reduces to Fig. 2

¥y =KX?*®  @pX)=cX+c,X*+¢,X?, |
where (5)
¢, =a—2by+3cy’, ¢,=b—3cy, ¢,=c< 0 and p= —ay > —1. {
Now taking the #-th moment about X = 0, we obtain

v, =K SmX""'”e“’“’dX

_ K nipi1 fp(x):lm__ K SW NP1 2y L9(X)
—[mm'lX | = ), X e 20X 430, X e d X

in which the integrated parts reduce to zero, and the remaining integral can

be expressed in terms of moments of higher order, so as

m+p+1Dv,+Cvn,  +20,00,,+3C0,, =0.

4> The assumption —ay>>—1 is made, so that the integration at x = —7 may be possible. When
a<_0, the curve really intersects x-axis at x =—7; but if ¢>>0 (yet a<(1/7), the negative root of
z-;:o goes out from the interval (—7,), and there y bhecomes imaginary, so that the curve de-
generates J-shaped, having ¥ = — 7 as asymptote. Suchlike gives rise, when p or ¢<0 in (iii) below.
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Putting here #=0,1,2,3,4, and in view of », =1, v, =d (mean), we get

(p+2)d +cv,+2c,p,+3c,p, =0,
(p+3Ww,+cv,+20,0,+3c,0, =0,
(p+4)yw,+cw,+2c,v,+3c,v, =0, [
(p+5w,+cw, +2c,0,+3c,p, =0.

(p+1) +c,d +2c,p,+3c,p, =0, '

(6)

These v,’s can be expressed in terms of moments pg,’s about the mean
X =d(=v,), all of which are obtainable from the given statistics :

Vi :/Ln+nlﬁn_1d+n(n2—1)/ﬁn_2dz+ ------ +n(”2_1),wzd”*2+d",

and thus

vy =p, =1, v, =d, (g, =0), v, =p,+d*, v, = p;+3p,d+d’, |

v, = p,+4p,d +6p,d* +d*, v, = p,+5p,d+10p,d* +10p,d* +d°, | (7)

vo = e +6p,d +15m,d* +20p,d> +15u,d* +d°, :

v, =, +Ted +218,d? +3518,d* +35,d* +212,d° +d". |
These being substituted in (6), we obtain five equations which involve five
unknowns p,c,,c,, ¢, and d. If d be regarded as known parameter for a
while, so (6) can be looked as simultaneous linear equations of ¢,,c,,c, and p.
Therefore, on solving any four, say the latter four of (6), and substituting
their values in the first, we get an equation of higher degree about 4. If its
root d =d, be adequately chosen, all numerical values of c,,¢c,,c,, p could

be computed. Lastly the coefficient K would be obtained from

SmX” exp (¢, X+¢,X*+¢,X*)dX = [l{

by means of mechanical integration. The distribution function (5) is thus

completely determined.

(iii) The case, where both sides are limited. Let the ends of the dis-
tribution be —y (< 0) and &(>0). The

D.E. (1) may be written as ¥
1dy__ax+ax’+ax’ (___ r(x) )
y dx (X +y)(6—x) (x+y)8—x)/’

where the quadratic «,+a,x+a,x* should
have two roots lying in (—«, 0) and (o, §)
respectively, so that «@,a,< 0 and in fact
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a, >0 and a,< 0, as seen below”. Solving the D.E. we get

» = K+ 6—2" exp [ {y—das—~a}s—yar| =/ @),

where
p= ‘1”(%72 , g = —3[1?@ , Y(x) =ax+a,x"+a,x*, | =y+8 (breadth).

Taking the left end x= —q as origin, and writing x-+y=X, the equation .
becomes
y=cX?(I—X)* exp (aX+bX"?). (8)

Its moment about X = 0 can be obtained as
Sap— Y X?(—X) exp (aX+bX?)dX

_ _ ¢ png]_ WN\TFL el |
— q+1[X (I—X)*" exp (X +bX )]O

+ SZ exp (aX+bX?) X7+ (I— X )i+ {¥+a+2bX}dX.

_c
g+1
Assumed that p > —1, ¢ >>—1%, the integrated parts do vanish; and from
the remaining integral, we have the following recurring formula

[(p+n)v, , = m+1+p+q—al)v,+(a—2bl)v,  +2bv,,,.
On writing v, =1, v, =d, and
Ip=A, =B, p+q—al=C, a—2bl=D, 20=FE, (9)
the above yields
(A+nB)v,_, = n+1+C)v,+Dv,  +Ev,.,.
Putting #=1,2,-.-,6, we obtain the following six equations :

(A+ B) =@2+C)d +Dv,+Ev,,
(A+2B)d = (3+C),+Dv,+Ev,,
(A+3B)y, = 4+C)y,+Dv,+Ev,,
(A+4B)y, = (5+C),+Dy,+ Ev ,
(A+5B)v, = (6+C);+Dv,+Ev,,
(A+6B)y, = (T+C)vy+Dv,+Ev, .

(10)

5 If we investigate more closely the sign of ¥(x) and the expansion of y = f(x) at origin &c.,
we see that, when p, ¢ are both positive, and moreover if @, -0, (so @;<0), then the curve becomes
really bimodal in (—7, ), but if @,<J0 (a, ~0), only unimodal in (-7, ), whereas, if p, ¢ are both
negative, the curve degenerates U-shaped, and bi- or uni- antimodal according as ¢, =0. If p, ¢ be
one positive and one negative, then the curve falls into a distorted J-shape.
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Whence, by the same reasoning as done in (ii), all values of A, B,C, D, E and
d can be determined, and in succession from (9) all values of /, p, b, a, g, and
finally the value of ¢ by the numerical computation of

S’ X?(I—X)® exp {aX+bX*}dX = %
If the definite integrals of y, X, ... could be expressed in finite forms, the
method would become far more facile.

§2. Since I could not find Pearson’s essay on the construction of bimodal
distribution by means of superposition of unimodals, a conjectured plan of
his method should be described below.

(i) In the case, that both sides are unlimited, anyone would suppose
immediately the superposition of two normal distributions. Nevertheless, the
actual analysis is a pretty troublesome®.

=== X

Fig. 4
The superposed frequency curve shall be

— 1 _(x"al)z} ", {__(-Vx_raz)z}
VS { 25t ) Voma, P 208 S (1)

where n,+n,=1, if y is the probability density (or if y be the actual frequency,
it shall be #,+n, = N, the actual total frequency).

To calculate the moment v, about origin, we write t=(x—a,;)/s, (i =1,2)
and integrate yx" between +oo. Making use of formulas

0, when # = odd,

tretdt =
S-“ {1‘ (’%1> , Wwhen #»n=-even,

we get easily the following results:

Y2 Kudo and others, l.c.
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v, =1=mn+n,, v, =mna +na, (—=d=total mean),

v, = n,(@3 + o) +n,(ai+c3), v, =mna(a’+3c?)+n,a,(a3+353),
v, = n,(a} +64a%c3 +30%) +n,(as+6aios -+ 303) ,

v, = n,a,(at +10aic? +150%) +n,a,(as + 10dic% + 1503) .

From these six equations we must determine six unknowns :
n,n,,a,6a,, o, 0,.

Specially for symmetrical distribution, the origin being the total mean,

1
we have #n, =#n, = 5 G =0y, 0y =0y, and consequently a@+¢}=p,,
at+6ai6%+ 30t = p, ; whence we obtain
1y

@ = N G2, of = =g =2
For the example treated in §1, we have p, =7499, u, =89.47, so that

@2 =62%, a, = +251, 02 =1.205, o, = 1.10 and as the required function

220 —(x—2.51)* —(x+2.51)2]
“\/ﬂ[exp o4l TSP — g3 ,

although this representation is not so good compared with that in §1. To

Y

test the fitness more exactly, one ought to use X°- or w’-test.

(it) If the distribution extends from x= —y to x=c0, we may carry out
the superposition of the curves
from Pearson’s type III

y=9, <1 +,x_>cye‘°",

Y
which have just alike ends.
Or, on translating the origin

into the left end, and writing
X+og= X, Fig. 5

y=kX?e T (¢ >0, p=cy >-—1).
Hence the required bimodal curve shall be
y=kX?e T4 X" % (c,c’ >0, p,p >—1). (2)

The n-th moment of the first component about X =0 is

k S”X" e TdX = k r (i) Vot ‘i”‘ (X = 1)

0 0

7D i1

:EL.L‘(n+p+1).
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Hence, if we put

_ D1y KV 41 _

y, =1
0 . )
Cp 1 C/IJ/ 1

K+K’,

the n—th moment of (2) becomes

= A (p+2) - Dtn) g (P +1) e (D' +7) g

C c/ n

v

By putting here # =0,1,2,...,6, we obtain seven equations, which contain
p, P, c, ¢ and K, K'. As done in (1.7), »,’s can be expressed linearly in u,’s,
so that, on solving thus obtained seven equations, we can evaluate the seven
unknowns, i.e. besides v, =d the above six unknowns, and lastly k&, & from
Kcrtt ,  K'¢¥'
T T+ T T+
by use of the Table of gamma function.
Otherwise, if the given distribution make strong contact with X-axis at
both ends, we may replace the foregoing by Pearson’s type V, and thus consider

y=kX %exp {—y/X} +FX ¥ exp {—¢'/X}, (3)

where v, >0 and ¢, ¢ are assumed to be sufficiently large, so that the
moments of pretty higher order still may exist. Consequently, so far as

n<_q—1 is,
v = koI g—n—1)+ Ko/ V(g —n—1) .
And if we put
vy =ky"(g—T)+ k¢ "V I(¢—T)=L+L’,
the others can be written as
v = Loy ™ (qg—=T)+ L'y (¢’ =T),
v, = Ly *(q—T)(q—6)+ L'y "*(¢'—T)(q’ —6),
v, = Ly™*(g—T7)(g—6)(g—5)+ -+ ,
v, = Loy *(g—T)(g—6)(q—5)g—4)+ -+ ;

v, = Loy 3(g—T7)(q—6)(q—5)g—4)(g—3) + -+~ ,
Vv, = Lry—E(q__'Y) ...... (q__2)+Llryl—G(ql_7) ______ (q/_z) .

Again, upon expressing v,’s in z,’s by (1.7), we can compute from these seven
equations the seven unknowns L,L’,v,+/,¢,¢ and v, =d, and lastly &, £’ from

k= LE/Lg=T), ¥ =Ly""/Ng=T)

by means of the Table of gamma function.
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(iii) In case that both ends ¢
are limited, we may refer to

Pearson’s type I, and assume

y = EX?(I— Xy + K X"([—X), }
@ll p,q, p',q >—1,171>0).
(4)

The area under the curve is Fig. 6

b o=1=F f X?(l— Xy dX+F g X (I—X)VdX
:kllﬂtI!1B(p+1, q+1)+k/lmE-Q/i-lB(p/+1’ q/+1)’

while the #—-th moment

vy =k S X* (- XY d X+ ¥ y X* e (1— X dX
:klﬂ"rp{'l'rlB(n_‘,’_p_,‘_l’ q+1)+k/l7l'i—ﬂ/"v‘1/+1B(n+pl+1’ q/+1) .
Hence, if A and A’ be two components in v,, we obtain

_ (+D(Pp+2) - (p+n) n (p'+1) .- (p'+n) AN
1)"#(1b+q+2) ------ (p+q+n+i'jl A+(p’+q’+2) ------ (p’+q’+n+1)l <5

Here letting # =0,1, --- ,6, we obtain, as before, seven equations containing
seven unknowns, A4, 4, p, p’,q,q¢ and d(=v,); whence all unknowns can be
evaluated, and lastly £ and %' from

k — A/ZI’%Q+IB(ZI)+1, q+1) , k/ — A//Z}ll-qu/—l»lB(p/'_*_l’ ql+1)

by means of the Table of Beta function.



