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In the present paper we shall give some remarks about finite semigroups
and shall determine all types of semigroups of order 4. The computation is
performed by use of the elementary method [17", the results of semigroups
of order 2, 3 [2], and our developed theories of semigroups. A general me-
thod of determination of finite semigroups (of an arbitrary order) is not yet
found out.

§ 1. Unipetent semigroups.

1 Unipotent semigroups. In the previous paper [3] we argued some
properties of finite unipotent semigroups. Furthermore we argued them from
more general standpoint in another article [4] by Clifford and Miller’s
theory [5].

We mean by a zero-semigroup a unipotent semigroup whose idempotent
is a two-sided zero 0. Apart from zero-semigroups of order x, unipotent
semigroups of order # are determined in such a way as following, if zero-
semigroups of order m<_n are all given.

A group G of order g, g < #, a zero-semigroup Z of order m where m =
n—g+1, and a homomorphism f of M= GVYZ’ onto G determine uniquely
a unipotent semigroup of order », greatest group of which is G [4].

Z’ symbols the set of all elements of Z except a zero, and M is the
union of G and Z’.

All unipotent semigroups of order 4 other than zero-semigroups are u—
11~u—19%, in which I. (2)* is the class of types g =2,1. (3) types g =3,
and I. (4) groups.

2 Zero-semigroups. Let ¢ be an element of a semigroup S. If there
exists x€ S such that ax =4, @ is called an left-invariant (or /-invariant)

" This research was sponsored, in part, by MIKI.KORAKUKAI. See Addendum at the end.
D The number in the bracket [ | shows the number of References appearing at the end.
2> It is an individual number of a type in the table at the end.

9+ It is a number of a class of types in the same table.
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element. Right-invariant (r—invariant) element is likewise defined. Here we
denote by Z a finite zero-semigroup.

Lemma 1. Z contains no l-invariant (r—invariant) element except 0.

Proof. Suppose that there is an /-invariant element a different from O.
Set X={x; x€Z, ax=a}. It is seen that X is a subsemigroup of Z and
does not contain 0; whence no idempotent lies in X because Z is a zero-
semigroup. This conflicts with the fact that a finite semigroup contains at

least one idempotent.
We introduce two orderings into Z: left ordering and right ordering.
a = b means that either ¢ =0 or a=bx for some x€Z, and a_= b means

»

1
that either ¢ = b or a = yb for some y € Z.

Lemma 2. The two orderings arve all partial ovderings.

Preof. Reflexivity and transitivity are clear. We shall prove anti-
symmetry. If ¢ =bx and b =ay for some x and y, then a=a(yx). But,
from Lemma 1, it follows that ¢ =0 and so ¢ =56 =0. Similar as to right

ordering.

Due to each of the two ordering, Z is a partly ordered set having 0 as
greatest element. Now an element « is called an /-minimal element if ¢ =6
for no b==a. Likewise an 7-minimal element is defined. Since Z is ﬁnlite,
minimal elements exist. Specially when a is least, a is called /-least (r—least)

element.

Lemma 3. If a is an [-minmimal element, then a is also r-minimal, and
vice versa.

Proof. If ¢ is not /~minimal, then ¢ = bx for some b, x € Z; s0 @ = x, that

is, @ is not »—minimal. The proof of the converse is similar. We notice that a
may be supposed to be distinct from 0, because the case of a trivial zero-

semigroup Z = {0} is out of consideration.

Lemma 4 Let Z be a finite zero-semigvoup. The following conditions
are all equivalent.
(1) Z has an [-least element.
(i1) Z has an v-least element.
(iil) Z forms a chain with vespect to the [-ordering.
(iv) Z forms a chain with vespect to the r—ordering.

(V) Zis a power semigroup.
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Proof.
L, (1i1) — (i)
Y (iv) — (i1) .

(i) 2 (ii) : obvious by Lemma 3. (i) — (v). Let a be the /-least element.
Every x==a is written x = ay, that is, the v-order is #—1 where # is the
d-order of Z. According to [6], Z is a power semigroup. (v)— (iii) and
(v) — (iv) are easily proved. (iii) — (i) and (iv) — (ii) are clear.

We denote by [a] the power subsemigroup generated by a:

[a]l={at; i=1,2,..}.

Now we define the third ordering in Z: a > b means that [a] [b].
This is called the power-ordering (p-ordering).

Lemma 5. a=0b if and only if a=10" for some positive integer n.
(see [7])

Lemma 6. The ordering = is a partial ordering.

Preof. We shall show anti-symmetry. If ¢>b and b>=a i e., b=a"
and ¢ =10", then ¢=a™ which leads to «=0 by Lemma 1, and hence
a=0=0.

Lemma 7. a = b implies a = b and a = b.
I3 r

Proof. By Lemma 5, ¢ = b" = bd" ' = "~ 5.

We shall construct, as an example, all types of zero-semigroups Z of
order 4 by the aid of the above lemmas.

All types of partly ordered set of order 4, which has a greatest element,
are shown as following.

a a a a a a
N | | PN VAN N
b ¢ b b b c bcd b d
NS | YN | |

d c c d d c

|
d
0-1 0-2 0-3 0-4 0-5 0-4/

These become naturally semilattices.

Under consideration of Lemmas 3, 4 and 7, the following table designates
all possible triple combinations chosen among them as /-, »— and p-orderings
in Z and all types of Z deduced from the combinations. By Lemma 4, 0-1
cannot be taken as /-ordering (r-ordering).
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The class [I].

I-ordering | 0-5 0-2 0-4 | 04 | 0-3 0-3 04 | 04

r—ordering 0-5 0-2 0-4 | 0-3 | 04 0-3 0-4 | 0-4

p-ordering | 0-5 | 0-1 | 0-2 | 0-4 | 0-4 | 0-4 | 0-3 { 0-4'| 05 | 0-5 | 0-5

| u-5
type of Z uw-1 | w-2 | none | w-3 | w-4 | w4’

Z:;/ w6 | ©-9 | «u-10 | u-10'
u-8

where #-4’, u-10" are dually isomorphic with #-4, «-10 respectively.

§ 2. Commutative semigroups.

According to [8], a finite commutative semigroup S is decomposed into
the class sum of mutually disjoint unipotent subsemigroups and the quotient
set forms a semilattce. Let L be a semilattice obtained in greatest decom-
position of S by which S=\7/§,.

By the types of L andi=§,, all types of a non-unipotent commutative
semigroup S of order 4 is classified into the following. Below, & symbols a
unipotent commutative semigroup of order i (: =1, 2, 3)

(1) Semilattice,
(2) 2-1-1 type.

® ® ) ® )
| | | N N
? CT) @’ ® O ® O
® ® ®
-1 -2 -3 -4 -5,
(3) 2-2 type
?
®
-6,
(4) 3-1 type
° 3
® ®
-7 [-8.

On the other hand, the types of &® and (® are

A B AA
® ‘ILA‘ AA!
U,-1 U,-2
IABC| |ABB ABA AAAl  AAA
[©)] BCA| BAA! BAB AAA AAA
'CAB' |BAA ABA, |AAB  AAA
Uy 1 U,-2 U,3 Us-4 U,-5 .
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Computating all types of S by elementary operations in each ease, we have
(1) Semilattice: VI. (1), i. e., ¢c-1 ~ ¢-5,

(2) 2-1-1 type: VL (2), (3) 2-2 type: VI. (3),
S T |
N L \ ‘ |- upper | \
. 1| L2 1-3 -4 5 ; Uyl | U2 |
® - ! - lower
S R v ‘k SN B I
U1 6 | 10 | 14 15 \ 18 U,-1 e | em
- c- } c- ) c- c- c- 2 , c-21 | c-24
B S o o B B i
Uz | o8 | 1| .1 | c-16 ] 19 U,-2 22 | %
z P c-12 c-17 | ¢ 2 c-26 |
R | L o ]
(4) 3-1 type: VI. (4),
| | ] i |
® | | |
I Usl | Ug2 Us-3 J U4 | Ugbs
L ‘ ‘ | !
— — ) '1
it ; |
' 28 -30 -32 &
\ 17 c-21 ¢ ‘ ‘\ ‘ | o \
| L 29 ¢-31 | ¢33 I a7 ’
! |
s . 38 | o3 =40 | 42 ] ca1 |

§ 3 Non-commutative semigroups.

Generally a semigroup S is able to be decomposable to a commutative
semigroup, i.e.,

S=\Ss SunSs=¢ (ak8),
and for « and B there is v such that S,S; S, and SgS, < S,. It is proved
that there exists a greatest decomposition of S to a commutative semigroup
[9]. The meaning of greatest decomposition is due to [8].
Let C be a commutative semigroup obtained in greatest commutativity
decomposition of S. We classify types of S into various classes according as
the type of C.

1. Commutativity-indecomposable semigrou p.
When C is composed of only one element, S is called commutativity-
indecomposable (c-indecomposable).

Lemm 8. If S is c—indecomposable, then SS = S.
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Proof. Suppose that SS& S.
Let A=SS and B=S—SS, then S=A VY B; this is a commutaitivity-

decomposition.

Lemma 9. [If S is c-indecomposable semigroup of ovder 4, then S has no
tow-sided ideal of ovder 2, 3.

Proof. (i) The proof of having no ideal of order 3.
Suppose that S has an ideal A of order 3 and let S=A VY {x}. Since ASC A
and SA C A, we have x° =x by Lemma 8; whence the decomposition of S,
S=AV {x}, gives commutativity.

(i1) The proof of having no ideal of order 2.

Let S={a, b,c,d}. Suppose that S has an ideal {a, b}. Since SS=S
and S has no ideal of order 3, the four cases are considered

abcd ab cd ab cd abcd
al | | al | al a,
d ] J b J b b J
¢ ﬂ‘ ¢ le [4 [ 1d ¢ ai
d. d dar | d | ¢ d. el
F-1 F-2 F-3 F-4

But, by an elementary theory,
we have

\

t
' from F-1, ‘ 75! from F-2,
77! cd , }d d
W’{ from F-3, i Td from F-4.
I d c‘ [d c

This shows that S is ¢-decomposable such that S = {a, b}V {c, d}, contradict-
ing with the assumption. Hence S has no ideal of order 2.
Consequently we get

Theorem. A c—indecomposable semigroup S of order 4 is completely
simple 1 107].

Proof. By Lemma 9, S has no ideal of order > 2. Since a finite semi-
group is simple, S is proved to be completely simple.

The theorem makes it possible to establish types of commutativity-
indecomposable semigroup as II, 7—1, i—2.

2. c—decomposable semigroups.
The types of C are as follows.
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AB B AB
AlAA A[AB] A‘A
BIAB B/BA BIAA
D,-1 D,-2 D,-3
|[ABC (ABB; ABA AAA AAA AAA
BCA| 'BAA| BAB AAA AAA ABC
[CAB 'BAA ABA AAB| AAA ACB
D1 D,-2 D;-3 Dy D, 5 D,-6
[AAA [ABA, [AAA AAA AAA| AAA|
‘ABC‘ '‘BA B ABB ABA| AAA ABB
ACA ABC ABC! AAC! AAC ABB!
Dy-7 D;-8 D,-9 D;-10 D;-11 Dy-12

2-2 type: III, 3-1 type: 1V,

\C‘ D,-1 ‘ D,-2 ’ D,-3 ‘ aaal abc | aba
I | | ’ A ‘a a a’ a II; c“ } a Ib) a ‘
o laaa abc \ aba '
\ (1) (2) ‘
i \ e L oo | o | ‘ D @ | @) !
LS| 31t |
‘ 3.1-2 3-1-3~3-1-8 3-1-9~3-1-13 i

There is no type of S in other cases than above 3 types of A.

2-1-1 type: V

M

C ‘ D,-1 ‘ D,-2 ‘ D,-3 ; D,-4 | D;-5 I D,-6
! I

Dy-7 | Dy-8 | Dy-9 !D3—1OiD3—11 Dy-12

|
S | none | none
i

‘nonei ® | @ ‘ (3 ’ @ | | ® ’ @ ‘ @ | ©

We notice that dually isomorphic non-commutative semigroups are omitted
in the table at the end. Thus we have obtained 194 types of semigroups of

order 4.

Finally I express my heartfelt thanks to Mr. M. Yamamura, Mr. T.
Akazawa and Mr. R. Shibata for their devotional works of the complicated

computation.
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Semigroups of order 4.
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Addendum

Although all types of semigroups of order 4 were already found out by
Mr. M. Yamamura & the writer in 1953, we have computed them once more
by utilizing the new theories. We have heard from Prof. E. Hewitt, Univ-
ersity of Washington, that Prof. G. E. Forsythe, Unviversity of California,

is computing them by a very large electronic computer.
August, 1954.
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