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§ 1. Introeduction.

Generally the set © of submonoids of a monoid® M constitutes a com-
plete lattice.® Although it is of course that the structure of & is given by
that of M, some property of M is characterized by a property of &. This
paper is concerned with the determination of all types of a monoid whose
all submonoids form a chain. We shall call such a monoid a /'-monoid. In
case when M is a finite group, the problem is solved by R. Baer [1] i.e.,

Lemma 1. The lattice formed by all submonoids of a finite group G is a
chain if and only if G is a cyclic group of prime power ovder.

In the present paper, it will be concluded that if a /~monoid M is finite,
M is a certain power monoid of order #, where p™ <n < p™+2, and p is a
prime number, and if M is infinite, M is a limit group of finite cyclic groups
of prime power order.

§ 2. Preliminaries.

In the below Lemmas 2 and 3 we assume M to be a monoid. Let us
denote by [a] a submonoid of M generated by only an element ac M, i.e.,
[a]l={a}; i1 =1,23, ---}.

If [a] is infinite (finite), then the element «¢ is said to be an element of
infinite (finite) order or an infinite (finite) element. We define a quasi-
ordering ¢ < b as [a] C [?].

Lemma 2. a < b if and only if a = 0" for some positive integer n.

Proof. If a= 50" for some n, then &” = (b")"=b"c[b] for every m.
Therefore [a] C [6]. The converse is clear by the definition.

9 This research was sponsored, in part, by MIKI-KORAKUKAL
D The “monoid” and “submonoid ” are synonyms of the “semigroup” and subsemigroup”’
respectively. cf. N. Bourbaki; Structure algebriques.

2 We shall consider even the empty set as a submonoid.
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On a monoid whose submonoids form a chain 9

Let M be a quotient set got by introducing into M the equivalence rela-
tion a~b defined as ¢ <b and b <a. M is a partly ordered set.

Lemma 3. There is an element b different from a such that a~b if and
only if [a] is a finite cyclic group of order n>=3.

Proof. If a~b as well as a==b, then a="50" and b=a"(k=F1, m==1)
by Lemma 2, and we have ¢ = ¢*™ where km >>4. It follows that a is of
finite order and it belongs to the greatest group G of [a] (see [2]). Hence
we get [a]=G. Next, supposing that a=4a", +t =2 or 3, it is readily led
that ¢ = «* =b. Therefore the order of G is at least 3. Conversely if [a]
is a cyclic group of order »:>-3, there is a positive integer m such that
1<m<_n and m is relatively prime to #. Then a™--a and a~a™. Thus
the proof of the lemma has been completed.

Hereafter we assume & to be a chain, in other words, M to be a I'-
monoid, and & is represented as

S = {S,; veA}
where the set A of suffixes is a chain, and has 0 as the least element and
¢ as the greatest, i.e., S, =¢, S¢ =M, and S, S, for ¢y<_¢.
Lemma 4. FEvery submonoid of a I'-monoid is a I'-monoid.

Proof. Let S be a submonoid of M and < be the set of all submonoids
of S. Of course £ &. The ordering in & is preserved in <.

Lemma 5. The homomorphic image M’ = (M) of a I'-monoid M by the
homomorphism f is a I'-monoid.

Proof. Let Sy and S,/ be submonoids of M’, and let S, and S, their
inverse images by f respectively. By the assumption, either S, S: or
Se < Sy; and so evidently f(S,) < f(S¢) or f(Se¢) C f(Sy). Thus M’ is proved to
be a /'-monoid.

Lemma 6. If M is a I'-monoid, every element of M is of finite order.
Namely | a] is a finite power monoid.

Proof. Suppose that there is an infinite element ¢e M. By Lemma 4,
[a] is a I'-monoid. But we see that [«] has two incomparable submonoids

[CZZ] = {a%; Z: 1} 2; 3) '”}: [03] = {aSi; i: 1; 27 3) "'};

this is contradictory with the assumption. Hence every element is of finite
order,



10 Takayuki TAMURA

§3. Type of chain.

We denote by & the set of all power submonoids of M. &’ is a sub-
chain of & admitting a chain 7”7 as an index set, and

@ = {Sy; yel"}, 1" T

where S, S, for y<¢.
We easily have

Lemma 7. Every S, is finite,
Lemma 8. M’ is ovder-isomovphic with 7.
The following lemma is remarkable.

Lemma 9. The ordinal number of I is not greater than the first infinite

ordinal number o.

Proof. When /" is finite, it is evident that /7 has finite ordinal number.
We shall discuss as to the case that 77 is infinite. Let ¢ be any element of any
subset 3/ of 7”. By Lemmas 7 and 8, the number of the elements of =’ which
lie before o is finite; and so ¥ has a least element. In other words, 7 is a
well-ordered set, the ordinal number of which we denote by y. Since /7 is
infinite, ® <. Next, suppose that w+1 <+, then it follows that S, is
infinite. This contradicts with Lemma 7. Henceforth we have y = w.

According to the above lemmas, all elements of &' may be generally
denoted as follows:

if M is finite, p=S_.&ES, &5, & &S,

if M is infinite, ¢=S_ &S, &S &S =SSy, &

0 =—

where S, & S; < S,., for no S5,¢® (y=-—1,0,1,2,-.-).
An increasing sequence {S,} of power submonoids of M where there is
no power submonoid S; such that S, &< S;&S,,, is called a full chain of

power submonoids of M.

Lemma 10. An increasing sequence {S)} is a full chain of power sub-
monoids if and only if any element of S,.,—S, generates S,.,.

Proof. Suppose {S,} is a full chain of M. Set S,=[a] and
T=S,.,—S,. Obviously [2#]S,., for any xe7, and we get [a]&[«x]
< S,.,. Hence [x]=3S,.,. Conversely if any element of S, ,—S, generates

S,.., it is seen that there is no S; such that S, &= S, & S,.,.
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From Lemma 10 we obtain easily the following
Lemma 11. If M is a I'-monoid, then there exists a full chain

[ao]< [alj < < [ay]<

of at most countable power submonoids such that M = O Lay].
y=a

A full chain {[a,]} satisfying M = \w/[ay] is called a basic chain of M.
A
The below lemma is worthy of notice.

Lemma 12. If A monoid M has a basic chain {[a,|}, any proper sub-
monoid of M is a power monoid.

Proof. Let S be any proper submonoid of M. There exists greatest ¥
of y such that [a,]S. For, if not so, [a,] S for every v, and so M= S.
Now, since[c] S for every ceS, we have ce[c] [a;]; and S [ay]
Combining it with [¢;] S, we get S =/[ay].
Thus it is concluded that every submonoid of a /'-monoid M is no other
than a power monoid which forms a full chain of M.

The following theorems are immediately obtained.

Theorem 1. If M is a I'-monoid, the ordinal number of & is not greater
than o+1, and every proper submonoid of M is a finite power monoid.

Theorem 2. A monoid M is a I'-monoid if and only if M has a basic
chain.

As special case we have

Lemma 13. If M is a I'-monoid as well as a group, then [a] is a prime
power cyclic group for every a€ M. Moreover the order of |a] is a power of
the same prime number.

Proof. Let a be any element different from the unit e of M. Of course
[a] is finite. We let # be the order of a:

=e (n™>1).
For every m = n, a” belongs to the cyclic group, the greatest group G, of [a]
(see [ 2]).

From at=a"=e,

7

a

aan—l — an~ 1an—1

Since M is a group, we get a = a""' by multiplying the both sides by the
inverse of ¢""'. Hence a¢cG,, that is to say, [«] is a cyclic group. It is
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owing to Lemma 1 that [«] is a prime power group. The latter half of the
lemma is readily shown.

§ 4. Type of difference monoid.
Lemma 14. A ['-monoid is unipotent inversible | 3].

Proof. If there exist distinct idempotents ¢ and b in M, then {a} and
{0} are incomparable submonoids of M. This conflicts with the assumption.
Therefore M is unipotent. By Lemma 6, any element « is represented as

a* = aa” ' = ¢ for some n >1; that is, M is inversible.

According to [2][3], G= Me is the greatest group of M. We denote
by M* the difference monoid [4] of M modulo G. Then M* is a I'-zero-
monoid [2] and every element of M* is of finite order by Lemmas 5 and 6.

Lemma 15. Let Z be a I'-zero-monoid. Every element of Z is of ovder®

at most 3.
Proof. If there is an element x of order 4 in Z,
[x] = {x, 2% 2% 0}, x"=0,
contains two incomparable submonoids
A=1{0,xY and B= {0, x%},

contradicting with the definition of a /'-monoid. If there is an element x € Z
is of order # >4, then a power zero-monoid [x] is homomorphic onto a
power zero-monoid C = {X, X?, X°, X* =0} [2] and the submonoids S, and
S, which correspond to {0, X*} and {0, X°} respectively are incomparable.

Theorem 3. A zero-monoid Z is a I'—-monoid if and only if Z is a power

zero-monoid of order® at most 3.

Proof. Suppose that Z is a I'-zero-monoid. If the number of elements
of a zero-monoid Z is no less than 4 or infinite, Lemma 15 makes it possible
for us to find different elements x and y having equal order m where m is
2or 3. Then it is seen that [x7] and [y] are incomparable submonoids of Z.
Hence Z is composed of at most 3 elements. Conversely we shall prove that
a zero-monoid of order at most 3 is a /'-monoid.

3 By the order # of an element x of a zero-monoid, we mean such z that x”=0 and xm==0 for
1<m<n.
) We mean the order of a monoid M the number of elements of M.
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Since a zero-monoid of order 2 is nothing but

0a
0/00,
a|00

the proof of this case is trivial. Using the theory of a finite zero—-monoid
[2][5], it is proved that zero-monoids of order 3 have two types as the

following:
(0ab 0ab
01000 01000
¢ 000 4]/ 000
51000 b|00a

The former is neither a power monoid nor a /-monoid for & is
{0, @, b}
/\
{0, a} {0, b} .
{0}

The latter is not only a power-monoid but a /'-monoid. In fact, & is

{0, a, b}
{dﬂ
|

{0} .
Thus we have completed the proof.

By Theorem 3, the difference monoid M* of M modulo G has been veri-

fied to consist of at most 3 elements.

§ 5. Infinite /'—monoid.

Now we shall determine the type of the infinite /~monoid in this para-
graph.

Lemma 16. An infinite ['-monoid is a group.

Proof. Let M be an infinite /-monoid, and G be this greatest group.
Suppose that GS M, then G is finite by Theorem 1, and the difference
monoid of M modulo G is finite by Theorem 3. Accordingly M is finite; this

contradicts with the assumption. This shows that G = M.
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As a result of Theorem 2, Lemmas 2 and 3, the structure of an infinite
I'-monoid is clarified in the following manner.
At first, we shall explain a “limit group of groups”. There is given an

increasing sequence of groups

NG (Che o (El =0
‘and isomorphisms ¢1 of G, into G4 (y< &) satisfying ¢idp} = $2. Let G be the
union of G, (y=0,1,2,..-): G=\JG, and let G be the quotient set of G
obtained by identifying ’

xeG, with y=¢}(x)eG,.

The product xy of x and y in G is defined as the product of x and y in a
certain group G, containing them. Then G is clearly a group. @ is called
a limit group of {G,; ¢1}.

Now, in an infinite 7'-monoid M there is a basic chain {[a,]} such that
[ay] is a cyclic group of prime power order p” and

M=\JS,
v=o
where Sy:[av]» a,=e, ay=ajy,, (‘Y:O, 1>2;)

It is readily seen that M is a limit group of {S,; ¢}} where ¢} is a mapping
of each element of S, into itself in S;.

Conversely, if we are given cyclic groups S, of order p" (y=0,1, 2, --),
an isomorphism ¢} of S, into Sy is uniquely determined and it holds ¢3¢} = ¢f.
Accordingly we can consider the limit group of {S,; ¢¥}. Then then sequence

SO<S1<Sz< <Sv<
is a full chain of power submonoids of M, because there is no power sub-

monoid S; between S, and S,,, (y=0, 1, .-). Consequently, by Theorem 2,
M is a I'-monoid and

M= \:/ La,]
y=o
where a, is a generator of S,, or {[a,]} is a basic chain of M.

Theorem 4. An infinite ['-monoid is a Ilimit group of cyclic groups
Sy (y=0,1,---) of order p' where p is a prime number, and vice versa.

Corollary. An infinite I'-monoid is isomorphic with the additive group E
of modulo 1 as follows.

E:{m;m:QLzan,w—Ln:QLz&mg

n
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§ 6. Finite /-monoids.
Finally we shall establish all types of finite 7"~monoids.
Lemma 17. A finite I'-monoid is a power monoid.

Preof. The full chain of power monoids of a finite /'-monoid M ceases

at finite terms:
[6]C (6]~ C[a] and M=\/[q].

Take any x€ M, then x€le, ] [a,] for some ¢t <n. Hence M [a.]; we
have M =]a,].

Since the greatest group G of a finite /'-monoid M is a cyclic group of
prime power order p™, the types of M is limited to the three, because of
Theorem 3,

(1) M is a power monoid of order p™ i.¢., M is a cyclic group,

(2) M is a power monoid of order p™+1,

(3) M is a power monoid of order p™+2,
where p™ is the order of G.

Hereafter we shall investigate the types of (2) and (3).

Lemma 18. Let p be a prime number. A power monoid M of order p™+-1,
whose greatest group G is of ovder p™, is a I'-monoid.

Proof. Let a be a generator of M. It is not hard to see

M= {a, a*, a°, - ,af’m, a*™ n,

m
where @=a? " and G={a &, ,a*

m

oy

Since a submonoid containing « coincides with M, we see easily that M is a
I'-monoid.
As to (3), we divide the cases into the two: p==2 and p=2.

Lemma 19. Let p be a prime number ==2. A power monoid M of order
P42, whose greatest group G is of ovder p™, is a I'-monoid.

Preof. We may prove that a submonoid S containing «® is nothing but
{@*} YG. Given any g, > 3,

2v = p, (mod. p™)

has a solution ». This shows that all elements of G are generated by a°
Hence S = {¢*} YG.

Lemma 20. A power monoid M of order 2"+2, whose greatest group is

of order 2™ is not a ['-monoid.
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Proof. In order that the congruence equation
2v == p, (mod. 2™)

has a solution, p, must be even. Let S be a power submonoid generated by
a’, then S~ G = {a*, a°, --- ,azm"‘ 21, It follows that S and G are incomparable.

Putting together Lemmas 18-20, we have

Theorem 5. A finite monoid M is a I'-monoid if and only if M is a
power monoid of order n satisfying two conditions:
(1) the greatest group G of M is of prime power orvder p™,
(2) pn=n<p™"+1 if p=2,
PrE<n<pn+2  if pR2.

Thus we have established all types of finite or infinite /'-monoids.

Finally I express my heartfelt thanks to Mr. Naoki Kimura for his kind
advice and suggestion as to the present paper.
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