ON A MONOID WHOSE SUBMONOIDS FORM A CHAIN®

By Takayuki TAMURA

Mathematical Institute, Gakugei Faculty, Tokushima University
(Received September 30, 1954)

§ 1. Introduction.

Generally the set \mathfrak{S} of submonoids of a monoid M constitutes a complete lattice. Although it is of course that the structure of \mathfrak{S} is given by that of M, some property of M is characterized by a property of \mathfrak{S} . This paper is concerned with the determination of all types of a monoid whose all submonoids form a chain. We shall call such a monoid a I'-monoid. In case when M is a finite group, the problem is solved by R. Baer [1] i.e.,

Lemma 1. The lattice formed by all submonoids of a finite group G is a chain if and only if G is a cyclic group of prime power order.

In the present paper, it will be concluded that if a Γ -monoid M is finite, M is a certain power monoid of order n, where $p^m \le n \le p^m + 2$, and p is a prime number, and if M is infinite, M is a limit group of finite cyclic groups of prime power order.

§ 2. Preliminaries.

In the below Lemmas 2 and 3 we assume M to be a monoid. Let us denote by [a] a submonoid of M generated by only an element $a \in M$, i.e.,

$$[a] = \{a^i; i = 1, 2, 3, \dots\}.$$

If [a] is infinite (finite), then the element a is said to be an element of infinite (finite) order or an infinite (finite) element. We define a quasi-ordering $a \leq b$ as $[a] \subset [b]$.

Lemma 2. $a \leq b$ if and only if $a = b^n$ for some positive integer n.

Proof. If $a = b^n$ for some n, then $a^m = (b^n)^m = b^{nm} \in [b]$ for every m. Therefore $[a] \subset [b]$. The converse is clear by the definition.

⁰⁾ This research was sponsored, in part, by MIKI-KORAKUKAI.

¹⁾ The "monoid" and "submonoid" are synonyms of the "semigroup" and "subsemigroup" respectively. cf. N. Bourbaki; Structure algebriques.

²⁾ We shall consider even the empty set as a submonoid.

Let \overline{M} be a quotient set got by introducing into M the equivalence relation $a \sim b$ defined as $a \leq b$ and $b \leq a$. \overline{M} is a partly ordered set.

Lemma 3. There is an element b different from a such that $a \sim b$ if and only if $\lceil a \rceil$ is a finite cyclic group of order $n \geq 3$.

Proof. If $a \sim b$ as well as a = b, then $a = b^k$ and $b = a^m (k + 1, m + 1)$ by Lemma 2, and we have $a = a^{km}$ where $km \geq 4$. It follows that a is of finite order and it belongs to the greatest group G of [a] (see [2]). Hence we get [a] = G. Next, supposing that $a = a^t$, t = 2 or 3, it is readily led that $a = a^2 = b$. Therefore the order of G is at least 3. Conversely if [a] is a cyclic group of order $n \geq 3$, there is a positive integer m such that 1 < m < n and m is relatively prime to n. Then $a^m + a$ and $a \sim a^m$. Thus the proof of the lemma has been completed.

Hereafter we assume \mathfrak{S} to be a chain, in other words, M to be a Γ -monoid, and \mathfrak{S} is represented as

$$\mathfrak{S} = \{S_r; \ \gamma \in \Lambda\}$$

where the set Λ of suffixes is a chain, and has 0 as the least element and ξ as the greatest, i. e., $S_0 = \phi$, $S_{\xi} = M$, and $S_{\gamma} \subset S_{\zeta}$ for $\gamma \subset \zeta$.

Lemma 4. Every submonoid of a Γ -monoid is a Γ -monoid.

Proof. Let S be a submonoid of M and \mathfrak{T} be the set of all submonoids of S. Of course $\mathfrak{T} \subset \mathfrak{S}$. The ordering in \mathfrak{S} is preserved in \mathfrak{T} .

Lemma 5. The homomorphic image M' = f(M) of a Γ -monoid M by the homomorphism f is a Γ -monoid.

Proof. Let S_{γ}' and S_{ζ}' be submonoids of M', and let S_{γ} and S_{ζ} their inverse images by f respectively. By the assumption, either $S_{\gamma} \subset S_{\zeta}$ or $S_{\zeta} \subset S_{\gamma}$; and so evidently $f(S_{\gamma}) \subset f(S_{\zeta})$ or $f(S_{\zeta}) \subset f(S_{\gamma})$. Thus M' is proved to be a Γ -monoid.

Lemma 6. If M is a Γ -monoid, every element of M is of finite order. Namely [a] is a finite power monoid.

Proof. Suppose that there is an infinite element $a \in M$. By Lemma 4, [a] is a Γ -monoid. But we see that [a] has two incomparable submonoids

$$[a^2] = \{a^{2i}; i = 1, 2, 3, \cdots\}, [a^3] = \{a^{3i}; i = 1, 2, 3, \cdots\};$$

this is contradictory with the assumption. Hence every element is of finite order.

§ 3. Type of chain.

We denote by \mathfrak{S}' the set of all power submonoids of M. \mathfrak{S}' is a subchain of \mathfrak{S} admitting a chain I'' as an index set, and

$$\mathfrak{S}' = \{S_{\gamma}; \ \gamma \in I''\}, \ \Gamma' \subset \Gamma$$

where $S_{\gamma} \subset S_{\zeta}$ for $\gamma \subset \zeta$.

We easily have

Lemma 7. Every S_{γ} is finite,

Lemma 8. M' is order-isomorphic with I''.

The following lemma is remarkable.

Lemma 9. The ordinal number of Γ' is not greater than the first infinite ordinal number ω .

Proof. When I'' is finite, it is evident that I'' has finite ordinal number. We shall discuss as to the case that I'' is infinite. Let σ be any element of any subset Σ' of I''. By Lemmas 7 and 8, the number of the elements of Σ' which lie before σ is finite; and so Σ' has a least element. In other words, I' is a well-ordered set, the ordinal number of which we denote by γ . Since I'' is infinite, $\omega \leq \gamma$. Next, suppose that $\omega + 1 \leq \gamma$, then it follows that S_{ω} is infinite. This contradicts with Lemma 7. Henceforth we have $\gamma = \omega$.

According to the above lemmas, all elements of \mathfrak{S}' may be generally denoted as follows:

if M is finite, $\phi = S_{-1} \subsetneq S_0 \subsetneq S_1 \subsetneq \cdots \subsetneq S_n$,

if M is infinite, $\phi = S_{-1} \subseteq S_0 \subseteq S_1 \subseteq \cdots \subseteq S_{\gamma} \subseteq S_{\gamma+1} \subseteq \cdots$

where $S_{\gamma} \subseteq S_{\delta} \subseteq S_{\gamma+1}$ for no $S_{\delta} \in \mathfrak{S}'$ $(\gamma = -1, 0, 1, 2, \cdots)$.

An increasing sequence $\{S_{\gamma}\}$ of power submonoids of M where there is no power submonoid S_{δ} such that $S_{\gamma} \subseteq S_{\delta} \subseteq S_{\gamma+1}$ is called a full chain of power submonoids of M.

Lemma 10. An increasing sequence $\{S_{\gamma}\}$ is a full chain of power submonoids if and only if any element of $S_{\gamma+1}-S_{\gamma}$ generates $S_{\gamma+1}$.

Proof. Suppose $\{S_{\gamma}\}$ is a full chain of M. Set $S_{\gamma} = [a]$ and $T = S_{\gamma+1} - S_{\gamma}$. Obviously $[x] \subset S_{\gamma+1}$ for any $x \in T$, and we get $[a] \subsetneq [x] \subset S_{\gamma+1}$. Hence $[x] = S_{\gamma+1}$. Conversely if any element of $S_{\gamma+1} - S_{\gamma}$ generates $S_{\gamma+1}$, it is seen that there is no S_{δ} such that $S_{\gamma} \subsetneq S_{\delta} \subsetneq S_{\gamma+1}$.

From Lemma 10 we obtain easily the following

Lemma 11. If M is a Γ -monoid, then there exists a full chain

$$[a_0] \subset [a_1] \subset \cdots \subset [a_\gamma] \subset \cdots$$

of at most countable power submonoids such that $M = \bigcup_{i=1}^{\infty} [a_i]$.

A full chain $\{[a_{\gamma}]\}$ satisfying $M = \bigvee_{\gamma=0}^{\infty} [a_{\gamma}]$ is called a basic chain of M. The below lemma is worthy of notice.

Lemma 12. If A monoid M has a basic chain $\{[a_{\gamma}]\}$, any proper submonoid of M is a power monoid.

Proof. Let S be any proper submonoid of M. There exists greatest $\bar{\gamma}$ of γ such that $[a_{\gamma}] \subset S$. For, if not so, $[a_{\gamma}] \subset S$ for every γ , and so M = S. Now, since $[c] \subset S$ for every $c \in S$, we have $c \in [c] \subset [a_{\bar{\gamma}}]$; and $S \subset [a_{\bar{\gamma}}]$. Combining it with $[a_{\bar{\gamma}}] \subset S$, we get $S = [a_{\bar{\gamma}}]$.

Thus it is concluded that every submonoid of a I'-monoid M is no other than a power monoid which forms a full chain of M.

The following theorems are immediately obtained.

Theorem 1. If M is a Γ -monoid, the ordinal number of \otimes is not greater than $\omega+1$, and every proper submonoid of M is a finite power monoid.

Theorem 2. A monoid M is a I'-monoid if and only if M has a basic chain.

As special case we have

Lemma 13. If M is a Γ -monoid as well as a group, then [a] is a prime power cyclic group for every $a \in M$. Moreover the order of [a] is a power of the same prime number.

Proof. Let a be any element different from the unit e of M. Of course [a] is finite. We let n be the order of a:

$$a^n = e$$
 $(n > 1)$.

For every $m \ge n$, a^{-n} belongs to the cyclic group, the greatest group G_0 of [a] (see [2]).

From

$$a^n = a^{2n} = e$$
,
 $aa^{n-1} = a^{n+1}a^{n-1}$.

Since M is a group, we get $a=a^{n+1}$ by multiplying the both sides by the inverse of a^{n-1} . Hence $a \in G_0$, that is to say, [a] is a cyclic group. It is

owing to Lemma 1 that [a] is a prime power group. The latter half of the lemma is readily shown.

§ 4. Type of difference monoid.

Lemma 14. A Γ -monoid is unipotent inversible [3].

Proof. If there exist distinct idempotents a and b in M, then $\{a\}$ and $\{b\}$ are incomparable submonoids of M. This conflicts with the assumption. Therefore M is unipotent. By Lemma 6, any element a is represented as $a^n = aa^{n-1} = e$ for some n > 1; that is, M is inversible.

According to [2] [3], G = Me is the greatest group of M. We denote by M^* the difference monoid [4] of M modulo G. Then M^* is a Γ -zero-monoid [2] and every element of M^* is of finite order by Lemmas 5 and 6.

Lemma 15. Let Z be a I'-zero-monoid. Every element of Z is of order³⁾ at most 3.

Proof. If there is an element x of order 4 in Z,

$$[x] = \{x, x^2, x^3, 0\}, x^4 = 0,$$

contains two incomparable submonoids

$$A = \{0, x^2\}$$
 and $B = \{0, x^3\}$,

contradicting with the definition of a Γ -monoid. If there is an element $x \in Z$ is of order n > 4, then a power zero-monoid [x] is homomorphic onto a power zero-monoid $C = \{X, X^2, X^3, X^4 = 0\}$ [2] and the submonoids S_1 and S_2 which correspond to $\{0, X^2\}$ and $\{0, X^3\}$ respectively are incomparable.

Theorem 3. A zero-monoid Z is a Γ -monoid if and only if Z is a power zero-monoid of order⁴⁾ at most 3.

Proof. Suppose that Z is a Γ -zero-monoid. If the number of elements of a zero-monoid Z is no less than 4 or infinite, Lemma 15 makes it possible for us to find different elements x and y having equal order m where m is 2 or 3. Then it is seen that [x] and [y] are incomparable submonoids of Z. Hence Z is composed of at most 3 elements. Conversely we shall prove that a zero-monoid of order at most 3 is a Γ -monoid.

³⁾ By the order n of an element x of a zero-monoid, we mean such n that $x^n=0$ and $x^m\neq 0$ for $1\leq m < n$.

We mean the order of a monoid M the number of elements of M.

Since a zero-monoid of order 2 is nothing but

$$\begin{array}{c|c} & 0 & a \\ \hline 0 & 0 & 0 \\ a & 0 & 0 \end{array}$$

the proof of this case is trivial. Using the theory of a finite zero-monoid [2] [5], it is proved that zero-monoids of order 3 have two types as the following:

The former is neither a power monoid nor a Γ -monoid for \mathfrak{S} is

The latter is not only a power-monoid but a Γ -monoid. In fact, $\mathfrak S$ is

$$\{0, a, b\}$$
 $\{0, a\}$
 $\{0, a\}$
 $\{0\}$.

Thus we have completed the proof.

By Theorem 3, the difference monoid M^* of M modulo G has been verified to consist of at most 3 elements.

§ 5. Infinite Γ -monoid.

Now we shall determine the type of the infinite Γ -monoid in this paragraph.

Lemma 16. An infinite I'-monoid is a group.

Proof. Let M be an infinite Γ -monoid, and G be this greatest group. Suppose that $G \subseteq M$, then G is finite by Theorem 1, and the difference monoid of M modulo G is finite by Theorem 3. Accordingly M is finite; this contradicts with the assumption. This shows that G = M.

As a result of Theorem 2, Lemmas 2 and 3, the structure of an infinite Γ -monoid is clarified in the following manner.

At first, we shall explain a "limit group of groups". There is given an increasing sequence of groups

$$G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_{\gamma} \subset \cdots$$

and isomorphisms ϕ_{δ}^{γ} of G_{γ} into G_{δ} ($\gamma < \delta$) satisfying $\phi_{\xi}^{\delta}\phi_{\delta}^{\gamma} = \phi_{\xi}^{\gamma}$. Let G be the union of G_{γ} ($\gamma = 0, 1, 2, \cdots$): $G = \bigcup_{\gamma} G_{\gamma}$ and let \overline{G} be the quotient set of G obtained by identifying

$$x \in G_{\gamma}$$
 with $y = \phi_{\delta}^{\gamma}(x) \in G_{\delta}$.

The product xy of x and y in \overline{G} is defined as the product of x and y in a certain group G_{γ} containing them. Then \overline{G} is clearly a group. \overline{G} is called a limit group of $\{G_{\gamma}; \phi_{\delta}^{\gamma}\}$.

Now, in an infinite Γ -monoid M there is a basic chain $\{[a_{\gamma}]\}$ such that $[a_{\gamma}]$ is a cyclic group of prime power order p^{γ} and

$$M = \bigvee_{\gamma=0}^{\infty} S_{\gamma}$$

where

$$S_{\gamma} = [a_{\gamma}], \quad a_{0} = e, \quad a_{\gamma} = a_{\gamma+1}^{p} \qquad (\gamma = 0, 1, 2, \cdots).$$

It is readily seen that M is a limit group of $\{S_{\gamma}; \phi_{\delta}^{\gamma}\}$ where ϕ_{δ}^{γ} is a mapping of each element of S_{γ} into itself in S_{δ} .

Conversely, if we are given cyclic groups S_{γ} of order p^{γ} ($\gamma = 0, 1, 2, \cdots$), an isomorphism ϕ_{δ}^{γ} of S_{γ} into S_{δ} is uniquely determined and it holds $\phi_{\delta}^{\delta}\phi_{\delta}^{\gamma} = \phi_{\delta}^{\gamma}$. Accordingly we can consider the limit group of $\{S_{\gamma}; \phi_{\delta}^{\gamma}\}$. Then then sequence

$$S_{\scriptscriptstyle 0} \subset S_{\scriptscriptstyle 1} \subset S_{\scriptscriptstyle 2} \subset \cdots \subset S_{\scriptscriptstyle \gamma} \subset \cdots$$

is a full chain of power submonoids of M, because there is no power submonoid S_{δ} between S_{γ} and $S_{\gamma+1}$ ($\gamma=0,1,\cdots$). Consequently, by Theorem 2, M is a Γ -monoid and

$$M = \bigvee_{\gamma=0}^{\infty} [a_{\gamma}]$$

where a_{γ} is a generator of S_{γ} , or $\{[a_{\gamma}]\}$ is a basic chain of M.

Theorem 4. An infinite Γ -monoid is a limit group of cyclic groups S_{γ} ($\gamma = 0, 1, \cdots$) of order p^{γ} where p is a prime number, and vice versa.

Corollary. An infinite Γ -monoid is isomorphic with the additive group E of modulo 1 as follows.

$$E = \left\{ \begin{array}{l} m \\ p^n \end{array}; \ m = 0, 1, 2, 3, \cdots, p^n - 1; \ n = 0, 1, 2, 3, \cdots \right\}.$$

§ 6. Finite Γ -monoids.

Finally we shall establish all types of finite Γ -monoids.

Lemma 17. A finite Γ -monoid is a power monoid.

Proof. The full chain of power monoids of a finite Γ -monoid M ceases at finite terms:

$$[a_0] \subset [a_1] \subset \cdots \subset [a_n]$$
 and $M = \bigvee_{i=0}^n [a_i]$.

Take any $x \in M$, then $x \in [a_t] \subset [a_n]$ for some $t \leq n$. Hence $M \subset [a_n]$; we have $M = [a_n]$.

Since the greatest group G of a finite I'-monoid M is a cyclic group of prime power order p'', the types of M is limited to the three, because of Theorem 3,

- (1) M is a power monoid of order p^m i.e., M is a cyclic group,
- (2) M is a power monoid of order p^m+1 ,
- (3) M is a power monoid of order p^m+2 , where p^m is the order of G.

Hereafter we shall investigate the types of (2) and (3).

Lemma 18. Let p be a prime number. A power monoid M of order p^m+1 , whose greatest group G is of order p^m , is a Γ -monoid.

Proof. Let a be a generator of M. It is not hard to see

$$M = \{a, a^2, a^3, \cdots, a^{p^m}, a^{p^{m}+1}\},$$

where

$$a^2 = a^{p^{m_{+2}}}$$
 and $G = \{a^2, a^3, \dots, a^{p^{m_{+1}}}\}$.

Since a submonoid containing a coincides with M, we see easily that M is a Γ -monoid.

As to (3), we divide the cases into the two: $p \neq 2$ and p = 2.

Lemma 19. Let p be a prime number $\neq 2$. A power monoid M of order p^m+2 , whose greatest group G is of order p^m , is a Γ -monoid.

Proof. We may prove that a submonoid S containing a^2 is nothing but $\{a^2\} \cup G$. Given any $\mu_0 \geq 3$,

$$2\nu \equiv \mu_0 \pmod{p^m}$$

has a solution ν . This shows that all elements of G are generated by a^2 . Hence $S = \{a^2\} \cup G$.

Lemma 20. A power monoid M of order 2^m+2 , whose greatest group is of order 2^m , is not a Γ -monoid.

Proof. In order that the congruence equation

$$2\nu \equiv \mu_0 \pmod{2^m}$$

has a solution, μ_0 must be even. Let S be a power submonoid generated by a^2 , then $S \cap G = \{a^4, a^6, \dots, a^{2^{m+2}}\}$. It follows that S and G are incomparable.

Putting together Lemmas 18-20, we have

Theorem 5. A finite monoid M is a Γ -monoid if and only if M is a power monoid of order n satisfying two conditions:

- (1) the greatest group G of M is of prime power order p^m ,
- (2) $p^m \le n \le p^m + 1$ if p = 2, $p^m \le n \le p^m + 2$ if $p \ne 2$.

Thus we have established all types of finite or infinite Γ -monoids.

Finally I express my heartfelt thanks to Mr. Naoki Kimura for his kind advice and suggestion as to the present paper.

References

- [1] R. Baer, The significance of the system of subgroups for the structure ef the group, Amer. Jour. of Math., vol. 61, 1939, pp. 1-44.
- [2] T. Tamura, On finite one-idempotent semigroups, Jour. of Gakugei, Tokushima Univ., vol. IV, 1954, pp. 11-20.
- [3] T. Tamura, Note on unipotent inversible semigroups, Kodai Math. Semi. Rep., No. 3, October, 1954, pp. 93–95.
 - [4] D. Rees, On seimgroups, Proc. Cambridge Phil. Soc., vol. 36, 1940, pp. 387-400.
- [5] T. Tamura, Some remarks on semigroups and all types of semigroups of order 2, 3, Jour. of Gakugei, Tokushima Univ., vol. III, 1953, pp. 1-11.