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In preceding papers, we discussed the variation of extended M(»)" of
analytic functions in complex Banach spaces. In this note, we take up first
the order of entire function in complex Banach spaces and discuss it by
using extended M(r) in §1.

In 1937, Professor A.E. Taylor® pointed out that the theorems of Weier-
strass and Picard were invalid generally and showed the existence of poles
of infinite orders in complex Banach spaces. Here, we investigate the isolated
singular point of analytic functions in §2.

Finally, in § 3, the extended lemma of Schwarz® will be applied to various
cases which will show us the convenience of treating analytic functions in
abstract spaces.

§1. The order of entire functions

Let E,,E,, -, E, be complex Banach spaces. An FE,-valued function
f(x) defined in a domain (which is open and connected) in E, is called analytic
if it is strongly continuous and admits G-differential. An E,—valued function
h,(x) defined in E, is called a homogeneous polynomial of degree #, if it is
analytic and satisfies #,(ax) = «"h,(x) for an arbitrary complex number «.

Definition 1. An E,~valued function f(x) defined in E, is called an entire
Sfunction if it is analytic on whole spaces.

Definition 2. Put p, = l—irﬁl-%, where M(ry=Sup || f(x)|| and f(x)
7oyoo Heli=r

IS an entive function.

Definiton 3. Put p,=Sup lim 12gl?§§%(7’ x)4j where M(r, x)=Sup || f(ax)||
Hell 1 roaes @

for an arbitrary point x on the set ||x||=1 and an entire function f(x).

Theorem 1. If a radius of bound of entire function f(x) is finite, then
po =+ It a radius of bound of en entire function f(x) is infinite, then
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I o nlog n
py = lim og 1
Sup || £4(%)]]

where f(x) = i ha(x) and h,(x) is a homogeneous polynomial of degree n.

Proof. If a radius of bound X of en entire function f(x) is finite,
M(r) = 4% for #>x. Then, 8 %og M)
such that » >\ and » >>1. This shows that

, for sufficiently larger »

Tim log log M(r) __

= +o0.
roron log »

If A=+, then llm 2/Sup |[h,(x)|| =0. Let & be an arbitrary positive

Hajj=1

number, then there ex1sts a positive number 7, such that
M(ry<e™™,
for » >r,, from the definition of p,.
On the other hand, for an arbitrary point x on the set ||x||=1, we have

flx)= i h.(x), since f(x) is analytic on whole space E,. Then

yP1TE

M
Sup | 7,(%)|] < Sup M(’ > %) r(,f)ge_.r?, ............ (1)
yP1+E n
Since (if takes its minimum at 7, which satisfies #°1"" = e the inequality

(1) holds for such 7, if » is sufficiently large. Thus we have

o

Sup || () || < : :(€(P1+‘9>>m_+e .

li@il= n

Taking the logarithum of the parts of two sides of the inequality,

£> log n—log e(p, + &)

Pyt 1 10g__1_“,
n EFE [ Aa(x) ]|
Since 11m’</Sup||h ®[ =0, p,+&E>Tm log 7

>0 1 1 g41—— .,
Sup || .(x)|]

Nl =1

Hzii=1

and then we have m}ﬁnf &gln e (2)

%8 Sup (1,311

fzip=1

because ¢ is an arbitrary positive number.
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Put p=Tm — "I8L  then Sup |Ih,n)l|< (L), oo (3)
%8 Sup ([, (x)]]

Hell=

for an arbitrary positive number & and n > n,(S).

Then we have hm \/Sup ||h,,(x)|| — 0, and we see that Z h,(x) is an entire

iiwii=

function. Since <—71{>"“r < > for n > n(r),

SUP | Ba(x) || 7* < 721—,; for n>>max. (n(r), n,(8)) .
Hzli=

Then,
n) -1

< 23 5Up 1@ | 7* =" 33 Sup || o) || 7+ 3T Sup || () | 7

n=0 {jmij=

Put  ¢(r) = Sup (Sup || £,(x)|| #*), then M(r)<n(r) C(?’)—FZ,T}—H .
70 jzll=1
rp‘LEx ! [
Since c¢(r) < e(rT€)¢ (which is the maximum of (%)’m * for n >0 and a

sufficiently large 7) from (3) and #n(») < (27)**¢ from <%>mr<717,
rP+E

M(r) P (27’)”” e(p+5)e+

Then we have lim log log M(r) < p+¢€,

7yo0 log
for an arbitrary positive number & From (2) and (4), p hrn %ﬁi’w?’).
This completes the proof.
Theorem 2. p, = Sup lim _nlogn
H@]]=1 n>oo Og .
| (%) ]]

Proof. Since f(x) is an entire function, we have

log log M(7, %) _ Gim nlogn

lim
*yo0 logr 7n->co o ,
|| Ba(x) ]|
as well as M(r), for an arbitrary point x on the set ||x|]|=1. Then we have
p, = Sup lim log lcig;{(r - — Sup lim - 98" logln
{#li=1 7>eo Hji=1 71—-)001 )
& @1

Theorem 3. p,<p,.

log log M(7, %) <10g log M(;)

Preof. Since M, x) < M(®r), 50 < oc7

and we have p,<(p,.
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§ 2. Singular points of analytic functiens.

A point x is called a singular point of f(x), when f(x) is not analytic in
any neighbourhood of x. A singular point x is called an isolated singular
point, if f(x) is analytic in a neighbourhood of x droping itself. In this

chapter, we research the state of an isolated singular point.

Definition 4. Let an E,-valued function R,(x) be analytic in 0<_||x||< oo
in E,. If R,(ax)= C%an(x) for any complex number «, then R,(x) is called
a homogeneous rational function of degree n.

Theorem 4. If f(x) is analytic in 0 <||x|| <R, then
Fx) =3 h(x)+ 3 Ro(2)

where h,(x) is a homogeneous polynomial of degree n and R,(x) is a homoge-
neous rational function of degree n.

Proof. Let x be an arbitrary point in 0<_||x||< R and « be a complex

number. Then f(ax) is an analytic function of « in 0<|a\< —_ and we

have

o= b | SePaq L] Flan g,

nal 271 )o' a—1

where C is a circle such that |a¢|=7(>1) and C’ is a circle |a|=7'(<_1).

?1(1

Since the series E J(xat) and i f(ax)a® converge uniformly respectively on

C and C’, we have

f(x)= L <271” f(,fxf) da) + Z <2~tz S f(ax)ac”‘da)

_ 2 <2:7L” g f(dx)da>+ 2 ( Scf(ax)a"da’) ,

R

E2N
= Scf(i“x)da and R, (x) = 1 Sf(ax)a' ‘da, then P,(x) is as

usual a homogeneous polynomial of deglee n by the uniformity of the integral
and the theorem of Zorn®. From the analyticity of f(ax) in 0<||x||< R

and the uniformity of convergence of the integral 271”.5 Flax)ad*da we know
4

because f (acx)oc" is analytic as to « for O <|a|<+—

Put P, (x) =

that R,(x) is analytic in 0<||x|| < c», appealing to also the analytic conti-
nuation. Let £ be an arbitrary complex number and x be an arbitrary point
in E,. Then we can take as C a circle with radius #» which satisfies
0<_7|&|-||x]| < R. Then



Notes on General Analysis (IV) 5

R(x) — 2}{—2. SW:). Flagx)arde |
Put &éa =, then

R = 5| Fen L as
11 .
z—g,-ﬁgnfm)ﬁ dg

= ;{;R(x) ,

where C’ is a circle with radius #’ which satisfies »’ = r|&|. Thus we see
that K,(x) is a homogeneous rational function of degree .

Now, we must research that which space has an isolated singular point.
A set of points {x,+«y,, x,+8y,)}, where points (x,, x,), (¥,,y,) are fixed and
«, 3 are arbitrary complex numbers, is called a 2-dimensional plane. If the
intersection of a set I' and an arbitrary 2-dimensional plane is connected or

null set, I is called 2-dimensionally connected.

Lemma”. Let f(x,,x,) in E,xE, to E, be analytic on the boundary ' of
a bounded domain A of E,xE,, where ' is 2—-dimensionally connected. Then

f(x,,x,) is analytic in A.

Theorem 5. [If f(x) has an isolated singular point, then E, is the one
dimensional space with respect to complex numbers.

Proof. By the axiom of Zermelo, complex Banach space is considered as
a well ordered set. Then we can find a set S of elements which are linearly
independent by the transfinite induction. If S does not consist of only an
element, S is divided an element and others which span a subspace E, and E,
separately. Then we have E,=FE,+E, as a direct sum of E, and E,. If we
assume that 0 is an isolated singular point of f(x) to simplify the notation,
f(x) is analytic on ||x||=p, for sufficiently small positive number p. Appealing
to Lemma™, f(x) is analytic in ||x||= p which contradicts to that 0 is a singular
point of f(x). Then we see that S consists of an element which shoes us E,

is an one-dimensional space. This completes the proof.

§ 3. The application of the extended lemma of Schwarz.

In this chapter, we show that some of theorems® in the book “Several
comlex variables by S. Bochwer and W. Martin” are included in the extended
lemma of Schwarz. In preceding papers, the lemma of Schwarz and the



6 Isae SHIMODA

Hadamard’s three spheres theorem were extended to complex Banach spaces
as follows:

The extended lemma of Schwarz®. Let an E, valued function f(x) defined
in the sphere ||x||< R of E, be analytic and satisfy f(0)=0and ||f(x)]|<M
in the spheve ||x||<_R. Then

TP

The extended Hadamard’s three spheres theorem®. If 0<#» <r,<7,,
M(r,) = M(r ) M(r,)*~°, where M(r)—-Supilf(x)H and 0 =087 —log7, o4
1 loar log 7,—log 7,
then 1—0 =987, —1087,
log »,—log 7,
Theorem 6. Let E,-valued function f,(x) be analytic on ||x|| 21 in E,
and satisfy f,(0)=0, for 1 ~i ~n. Then

Z 1A 7 < || ] Sup (Z L1177

1wl =

Preof. In the product space E, x E,x .- x E,,, the norm of y=(y,,5,, -, )
is defined as follows ||y|| = (i} ”yin),;;’ where y, belongs to E,, then this

product space is the complex Banach spaces. Put F'(x)=(f,(x), f,(x), -+, fo(%x)),
then F(x) is an E,xE,x --- x E, valued function and analytic in ||x|| <{1.
Appealing to the extended lemma of Schwarz, we have ||F'(x)|| . ||x]| Sup [1F(x)l],

when SupHF(r) | < oo. On the other hand, ||F(x)| = ( z_, Hf(x)}]”)l’

Thus we have (3} |I/,()[)7 (12| Sup (3 |l £x) |7
Even if Sup ||F(x)|| = <o, our inequality is also held clearly.
Hei =1

Corollary. If complex valued functions f,(«), f,(«), -, f.(c) are regular
in |a|<1 and satisfy f,(0)=0 for 1<i<n, then we have

(S]1Ade )3 2lal-Max. (3] fde) 17

Proof. Let ||«||=|«| and E, be a complex plane, then we have this
Corollary, appealing to Theorem 6.

Theorem 7. Let E,-valued function f,(x) be analytic on ||x||<1 in E,
for 1<i<mn, then we have

Sup (E IA1PF £ | { Sup (Z £ 1) Sup (Z B

nwli=ry i=1 7 mi=v

log 7,—log 7 log 7,—log 7,
() et L - T A==z L&
when 0<r < r,<r, 21, where o= 1 and 1— o=l
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Proof. Put F(x)=(f,(#), /(%) =, fx) and [F@)] = (2 IL@I)7,
then F(x) is an analytic function defined on ||x|| ~1 in E, and takes its
values in the product space E, x E,x ----- xE,.

Appealing to the extended Adamard’s three spheres theorem, we have

Sup (| F(x)| < (Sup | F@)|*(Sup | F@))~*,

Hizli=r3

log r,—log 7,

where 6 =
log r,—log 7,

Since [|F(x)| = <2 1£.(®)][") 7, we have

Sup ( EHf @7 £ SUD(LHf(x)H } Sup(Z[lfi(x)H yPy-e.

H@lj=7y =1 leli=v3 ¢

We can easily have following Corollary.

Corollary. If complex valued functions f (&), f.(a), -+, f.() are regular
in |a|.£1, then we have

Max. (Z | Fle) |77 < Max (Z | Fla) ") }® (Max. (E | fla) [Py yree,

lw|=7y = @i=7 = jai=r3
log r,—log 7
when 0<7, <7,<7,<1, where 6§ =—2"3 5672
<< whete log7,—log 7,
In these theorems, we see that it is convenient to treat analytic functions

in abstract spaces.
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