Journal of Gakugei, Tokushima University,
Vol. IV, 1954

SOME INVESTIGATIONS IN MATHEMATICAL
CARTOGRAPHY

Takaharu MARUYAMA
Mathematical Institute, Gakugei College, Tokushima University.

(Received September 15, 1953)

Introduction

Since Tissot’s noted works® were published, we have been interested in
the studies of the distortion theories in mathematical cartography. In recent
years Konig has discussed the distortion theories of conformal projections in
his noted book ‘Mathematische Grundlagen der HGheren Geodédsie und
Kartographie ”. In this book, he refered to the conformal conical projections
and their modifications, under the title of “ Allgemeinen Kegelprojektionen "%,

Indeed we can say that the problems of distortions in cartography are
reducible to solve some problems concerning with the partial differential
equations. In KoGnig’s book he treated them as some problems of initial
conditions in the theories of partial differential equations.

Considering these problems, a step forward, we desire to get some new
types of modifications in conformal conical projections. It is very interesting
to solve the distortion problems under the various kinds of conditions, in
theoretically or practically. We desire to refer to these kinds of problems
in next chances.

I Conformal Projections between Two Suxfaces.

In the theories of differential geometry, we know that, if on each of
two surfaces, a pair of isometric coordinates u,» and #/, »' are chosen, the
equation #-+7v = f(u'+12") defines all conformal projections between these
surfaces, when the function f is analytic with regard to the variable #'+ iv'.

In cartography we consider mainly conformal projections between a
spheroid, including a sphere as a special case, and a plane. So if we put
the isometric coodinates on the spheroid to H and L, we get

SCICREY (e L) R

where B is the geographical latitude on the spheroid and ¢ is its exentricity.
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As e is equal to zero on the sphere, we get

— ’Z B llllllllllllllllll
H = log tan (T+_2_> (2),

on the other side, L is the longitude measured from a suitable meridian.
Chosing these isometric coordinates, we get

ds? = N2 cos? B(dH? + dL?) e (3),

where ds, is the line element on the surface, and N is the radius of trans-
verse curvature at the given point. So IV is represented to

Ne 2 ° (4
_m ............ )’

where a ‘is the length of the major axis. Of course, in the case of sphere,
as e is equal to zero, N is equal to the radius R; and ds? is represented to

ds? = R* cos® B(dH?®+dL?) = eeeeniiinninn (5).

Now it is clear that the plane rectangular coordinates x and y are iso-
metric, so we conclude that the general conformal projections between a
sheroid and a plane is represented to

2=x4+1y = f(H+iL)= x(H, L)+ y(H, L)® s reeveeerrrnns (6),

where z is an analytic function of H+iL.
So the line element ds, on the plane is

ds? = (dH?*+dL?) = eeeeeeenenni (7),
e (22 Y <9x>2 .................. :
where py _<8—H>+ T (8);

then the distortion m is given by

2 2 )
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2 _— . ssssssssesssses e
m—d_siﬁNzcoszB (9.

All the distortion problems concerning with the conformal projections are
based on the equation (9).

II Conformal Conical Projections and Their Modifications.

According to the Konig’s symbols, we put H+iL to M and introduce A
from the expression

A= e ™D (10)
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where « and % are pure constants. If we put the real and imaginary parts
of A to x and y respectively, we get the following conformal projection

x = ke™*% cos (aL) = —ke % sin (al)  oeeeeeeen 1.

. . k2a26—2a1~1
Calculating from (11), we get m* = NreoT B e (12).
Then we can get k= N,cot Be®™, oo (13).
and a=sin B, - = ccceceeccnieninn (14),

respectively, for m shall be unity at the given latitude B,, and H,, N,,
mean the values of N and H at the given latitude B,. It is the principles
of the theories of ordinary conformal conical projections.
Konig desired to extend the above projections, by introducing A, such as
_aA4b®
47 cA+d
where a, b, ¢, d, are any constants, and he defined A, to «“ Allgemeinen Kegel-
projektionen ”. By introducing A, he got the various kinds of projections.
So not only whose distortion m is equal to unity at the central point (B,, L,,),
but they are satisfied by the various properties of conditions In these
projections, generally, it is impossible to make m unity along the definite
parallel B,, at any longitude L. Because of the facts, it is not suitable to
say that these projections to conical projections, in strict sense; so we called

them the modifications of conical projections. Adding to the conditions that m
om om Pm Pm Pm

SH 3L’ oH* o> oLk &t

is equal to unity, we desire to all the values of

are equal to zero at the central point.
So we extend the expression (10) to the form

A = ef(}l) — ep-H‘q

such that the function f(M) is an anatytic function of M. Then we desire
to decide the forms of f, so as to all the above conditions are satisfied. After
the deciding of the function f, we put the real and imaginary parts of (16)
to x and y, and get the conformal projection

x =1¢" cos ¢q y=2e" sin g e (17).
From (9) and (17), we get

282P

m( RP4S%) e (18),

Iu,-:.mzz.—_

where R and S in (18) mean that

_0b _9¢ ¢_Op_ _93q
R=p=%0 S=31= ~5p’ (19).
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From (18), calculating ajlﬁj etc. we get the conditions of p and ¢, which

are satisfied by the following equations

oH op @%) _< e\ 92#) _
(50 ). =50), = (G, = Gorsr), = (5ta), = 0 - S
where <%> etc. mean the values of them at the central point.

)

So f(M) is an analytic function of M, we see that the followings hold,
OR _ _9S ©°R oS ©YR_ _FPR__ S 2SS o*S _ PR
o9H oL’ oL ~ oH’ oH* ~ 2L®* ©OHoL’ oH®*  °oL*  ©oHOoL

............ (21).

Using the conditions of (21), we get the followings by differentiating of (18),

(1)~ 2 ooy
1) 4¢%%0 o aR
(%)0 - N2 ceoszTo[RSIS{ S +(Sz +R2)S1 ......... (22),

where N,, B,, P,, mean the values of N, B, P, at the central point; in the
calculation of the above the effects of the exentricity were neglected, for it
is very small.

From (20) and (22), we get the following equations

[Rg§+sas +(S2-+ RYR +(S?+ R?) sin B] —0 1
0

[Rgg —s___ +(S?+ RS ]0 —0

After the differentation of (22), we get the followings by using of the
results of (20) and (23),

(Gr), = wroer B (2r) + R (5a) + (Z) +S5pe+ 'SR+ 2SR ]

+ 3R2ﬁ+28 sin B.C g +2R sin Bg—g+coszB(Sz+R2)] —0

+ 2R sin BaaT]S[—ZS sin ngr] 0 o
(Gh), = mrassl () +2(GH) o+ Gr) —*(5m)

+2RS 2> as - 3522113] —0
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If we assume that the function f(M)= p+iq is developable in Taylor’s
series in the neighbourhood of the point (0, 0), it is possible to put it to

SM)=a,+a, M+ a;M*+a; M3 +--- e (25),
Assuming all «, (i > 4) are zero, we can put p, and ¢, to the form
D = oty + oy H+ ay(H*— L)+ ay(H* —3HL?)

g = a,L+ 20, HL+ aty(3H?*L— L) [ (26)

Then we get from (19) and (21),
R =, + 20, H+3cy(H:*—L*) S= —2a,L—6a,HL ---------- 27,
and R — 20,4 60,8, g% — —6a,L, 2152 — 6aj, —2—21% Y SO (28).
Putting the value of L at the central point to zero, we see that the values
of S, gfj 88;16; etc. are equal to zero at the point, and the equations (23), (24)

are reducible to the form

oR 3, p2 _
R <8H> +R}+RZ%sin By=0

oR of 2R 2<8R> <8R> 2 e B o (29).
(éﬁ) +R<8H2> +3R SH + 2R, sin B ~H +R% cos* B, =0 (29)

oR %R of OR
(55). + Bl 5v), —F(5m ), =©
Other equations of (23) and (24) all vanish at the central point naturally.
oR (8213)
oH,,’y \oH*®/¢
and from (27) and (28), we can get the values of «,, «,, and «, .

Solving the equations of (27), we can decide the values of R, (

For simplicity, if we take the central point on the equator and put B, to
zero, the above equations (29) are reduced to the form,

R0<aR> +RI=0 (%) +R2 <82R) +3R2<8R> +Ri=

oH oH /o oH? oH
aR> <82R> 2 (aR >2 _
i R2 RN =0
<8H 0+ oH?/o ° oH /o (30).
Solving the equation (30), we get
1 oR 1 2
R=1 (R)__1 (¥R)_1
2 oH/o 4 2H%*/0 4
and Ro — _l (%) — —l (iz_Ri) — __i ............ (31),
2 oH /o 4 oH?/o 4
from these results and (28), (29), we get
“1 = l C(z —_ -—l a4 _ _];

2 8 24
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In general, giving any value of B,, it is difficult to solve the values of
a,, &y, &y, so simply. But we can solve these equations by suitable alge-
braic method. In this discussion we did not refer to the condition that m is
equal to unity at the central point; for ¢” is a constant, so «, may be
decided similary the method of (14).

At the end of this paper, we shall refer to the case when «;s take any
complex values.

Indeed, if we put @, to a pure imaginary i8,, H and L were interchanged
in (26), so the conical projection is said a transeverse projection.

So in general if «,s take any complex values we can say that it is the
case of the oblique projection. Generally speaking, it is difficult to treat the
case of oblique projections, gemetrically on the spheroid; but by means of
introducing of complex coefficients, we can consider them very easily.

These conditions which are considered now, are nothing but some initial
conditions at the central point. But it is understood, that the conditions which
are requested in the conical projection with two standard paralleles are so
to speak some primitive boundary conditions. So it is expected to get some
useful projections by the extensions of these methods.
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