Journal of Gakugei, Tokushima University
Vol. 1V, 1954

ON THE PARTIAL DIFFERENTIAL EQUATION OF
PARABOLIC TYPE WITH CONSTANT COEFFICIENTS

by Yoshikatsu WATANABE and Mikio NAKAMURA
Mathematical Institute, Gakugei Colledge, Tokushima University.

(Received September 15, 1953)

We consider the linear homogeneous partial differential equation of second
order with constant coefficients®
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In particular, when it is of parabolic type, i.e. if B2—4AC =0, then by the

familiar transformation £ =y—ax, » =, « being the equal root of the equa-
tion Ay*—By+C =0, we have

O 0 O 425 % feu=0, (2)
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where ¢ = — g b—%, c—-—é—.z) Or, on writing
bz_cz’—/bz(:b()),a) "7=L’ iz:k’ _é:k and u-——ve"‘”, (3)
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we obtain
2%

o +2hg§+v=0. (4)

Let supplementary conditions be such that, in regard to (2)

u=f(&), %‘;—=F<s>, when 5=0,

(5)
which become for (4)
v:f(é), @_:MEg(E)’ when t:O’ (6)
ot 7

where it is assumed that f(£) as well as F(&) (and so also g(&)) all permit

1> The constants as well as the variables are supposed to be complex in general.

2> Here we have assumed as BC==0; but if one of B and C (or A) vanishes, so also the other
must vanish because of B2=4AC, and then the original equation (1) already has the form (2)
or alike.

3) The case pu=0 i. e. 82=c shall be considered later on.
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40 Yoshikatsu WATANABE & Mikio NAKAMURA

Taylor’s expansion in the vicinity of £ = 0. If the solution of (4) satisfying
(6) could be found, it should contain two arbitrarily chosen functions f(&)
and g(&), so that it might be regarded as the general solution of (1), if the
letters be put back.
For our purpose, we think the equation of hyperbolic type
O 2 00 | gp B0

=0,
ot? oE* o T+

whose solution is obtainable by Riemann’s method with Bessel function. Now
making & — 0, we get, as the required solution, superficially

v =5 B roxevin— 5B gog Yauld, (7)
where V,(¢) stands for v
I
Vit) = [_d? cos (1 1+2¢ t)]t—o, (8)

and consequently

Vi(t)=cost, V()= —tsint, Vy(t)= —t, cosi+¢sint,
V() = 3t* cos £+ (3 —3¢) sin ¢, V,(¢) = (#*—15¢%) cos ¢t —(6¢* —15¢) sin ¢,
Vi(#) = —(10£*—105¢2) cos ¢t —(¢#°—45¢2 +1054¢) sin £, and so on.

The arguement ¢ being complex in general, if { =60+, "—1 (0, v real), so it
must be understood that

c0s { = co0s §-cosh ~—i sin @ sinh =, sin { = sin §-cosh =47 cos §-sinh 7.

Or expanding V,.(¢) in power series, we get

Vi(t) = i"]( 1) [

woaty] = IR

= (20! ag m=o |m |2m+2n
_ (_1)7;211‘& 12"{1_ tz i t4 _ tﬁ
12n (2n+1)2-1  (2r+1)2n+3)-22]2 (2n+1)2n+3)(2n+5).2%-3
v, (9)

which is evidently convergent in the whole {-plane, and thus defines an inte-
gral transcendental function. Moreover V,(¢) satisfies the following differential
equation®

O If f(&) or F (&) behaves as 1/¢ at =0, so that not regular, we may put {=¢-+8; now that
g;}:a@:_/, and f (&), I(¢) become regular at &=0, the same treatment is still possible.
5> The equation (10) is different from ordinary equations, such as Legendre, Bessel, Gauss; and

therefore it seems to deserve consideration in detail.
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dy o dy ( 2n>
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and besides the following identities

Va_
tz

~

-1 (11)

and
V' + Va= —2nV,_,. (12)

Using these relations, we can show that the expression (7) really satisfies
the equation (4). In fact, upon differentiating (7) partially with respect to ¢
twice, we have

. . mp P w ) Vi) Vasa(t)
P~ 5P e 51 gexp[ Vil p Vi) p Voul]

Adding this to (7), we get

%
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in which on account of (12) and (11) the first square bracket reduces to
—2nV,_(¢), while the second to _Zt_n Vu(t). Or, on factorizing —2h, it
becomes

%
or?

+v= —2h [ Z f<m+1>(§)Vm(t) — Z g<m+1>(§) m+1(f)]

v
= —2h 2", .E.D.
o& Q

Next we shall show that the supplementary conditions (6) are satisfied
by (7). Really, since V,(0)=1 and V,(0)=0,2=1,2,3,--- as well as

(V’;;l@) =0, &c, we see immediately that
0
Voo = FAE) = S(E),

and

( g;; ) i h"f @ >(§) V,(0) +2 g(m(g)v 0)=g(&).

0

Thus the supplementary conditions are all fulfilled.
Furthermore we can show the convergency of (7). Making use of
Stirling’s formula, when # is sufficiently great, we have for (9)
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where R denotes the radius of an arbitrary but fixed circle described in
¢-plane, origin as centre. We have assumed that f(£) is regular within a
domain D containing £=0. Hence the inside of D can be covered by a
finite number of circles, & being the centre of one of them, and let the radius
be p. We have then]ngp]f(z)lgzrf;(]f(z)]:M, so that

100 | M M (1)
n ,).n
where r denotes the least value among those radii of the covering circles
and surely finite (>0 and not infinitely small).® Now we can prove the
uniform convergency of the first summation in (7) as follows:
From (13) and (14) we get for |¢|<R and £ in D
hR*
R'n t —_— S Vn t < —— <e > »
IRt Bl=| 5 T rewvinl< 25 (58
where the number in the last round bracket may be made < & by taking #z
sufficiently large, say # > n,, and thus #», can be chosen independently of ¢

and £ Consequently

Meg™o
R,
IRt Bl Ze- 516 = S

and again the last side itself can be made < any prescribed small positive
number &, if we take #, sufficiently great, say n,”>u,. Therefore the first

(n Z nO))

summation in (7) is certainly uniformly convergent. A similar argument
could be made about the second summation of (7). Hence the whole expres-
sion (7) should be regular in the vicinity of € =0, # =0.

Returning to previous letters, the solution of (2) satisfying the supple-
mentary conditions (5) is given by

B f_,‘ <£2>n {f(n)(g) Vol ) — F(n)(g)+bf<n)($) Va u(;m)} (15)
#=0 \pgg 7! /" 7

It is convenient to take —pu® =% =10%—c, if u@* is real negative, and to write
(15) in the form

6 Or more precisely we may argue as follows. Conceive an inner domain Dy(_D, which
lies wholly inside D, yet almost coincides with it; thus D;={z||f(2)|<M, m(D—D;)<€}. Let the
second inner domain be Dy D, whose boundary Cy is apart ferm C;, the boundary of D;, at a
distance § (>0 however small). Now surely Dy can be covered gy a finite number of circles with
the property enunciated in text.
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g (R A SF™(E) y F™E)+bf (&) Wnu(vn)
w=et S (-5) TR men+ 5 (- 5) S
(16)
where
‘7_271 = lm'*‘n 'sz
Wlm) = Viliry=2 2w i mazn 17

Lastly, if §*=c¢ in (3), so that x =0, we see that

b

fim Yalpn) _ (Z1)"-2%[n o
po  pln 12n
by (9). Substituting this value in (15), we obtain, as the solution of (2) in

the case =20,

R P e AR AT L ] BSD

Example 1. i Zau +2 == & +cu =0, where ¢=2 or 1 or 0, the
ot OF oy

supplementary conditions being # = f(£), —5— = F(&), when 5 =0.
7

(i) If ¢ =2, we have p®>=c—0*=1. Hence, setting a=b=p"=1in
(15), we obtain the general solution

%= e {i fE v n—7L “E)+ FE) Vn+1(77)}

= I n 7
where
_ (=12 { R 7" _ }
Valo) = |2 (Cn+1)-2-]1  (2n+1)2n+3)-2"-12 )

() If c=1, so p*=c¢—b*=0, and we ought to take (18). Hence
— o7 S ("1)n’2" (), 2n (—1)n'2n (O/EAWRY A 2n+1]
w=e| B E s B G I e+ Foxe) o).

(iii) If ¢=0, then »*=10%*—c=1. So that we get by (16) and (17)
u=e™" {2 MW( )+Z. (—1) fAE)+FE) Was 1(77)}

Ao n In 7

where

2, |n { . 772n+2 ,'72n+4 }
W.( -t 4 + 4 e
M= 5 (n+1)-2-1L  (Zn+ 1)Y(2n+3)-2%12

2
Example 2. Al

ot O



44 Yoshikatsu WATANABE & Mikio NAKAMURA

This corresponds to the case ¢ = -%, b=c¢=0 in (2), and evidently

bestows the differential equation of conduction of heat in a linear body with
infinite length, where 5 denotes the distance, while & means time! Our
solution is nothing to do for well known classical thermal differential equations,
such as e. g. with the initial condition # = ¢(z) when £ =0, and besides the
boundary condition # =0 at 5 = 4cc. Yet it may be interpretted physically
as follows: The supplementary cond1t1ons 5 express that the temperature at

origin (= #,.,) in any time £, as well as the thermal gradient there <%>
7/ =0
are confined to be f(£) and F(£) respectively, both being given functions of

time & As its solution under said conditions (the conditions at origin), we
obtain from (18)

2"l+1

‘= nz‘uz

which gives the temperature at the distance 5 in any time £.



