Journal of Gakugei, Tokushima University
Vol. IV, 1954

ON FINITE ONE-IDEMPOTENT SEMIGROUPS (1)

Takayuki TAMURA
Mathematical Institute, Gakugei College, Tokushima University.

(Received September 15, 1953)

Since a finite semigroup contains at least one idempotent [1], [2], the
number or the behaviour of idempotents plays an important part in the theory
of finite semigroups. As the simplest case, we argue in this paper the
structure of a finite one-idempotent semigroup, by which we mean a finite
semigroup having only one idempotent. However the precise discussions are
here limited to some special cases, and so the others will be called to account
in the part II (which is unpublished). In §1 we relate to the group that is
called “Kerngruppe ”, and in §2 give the condition for a one-idempotent
semigroup to be a group. Especially we investigate the enclosed extension
of a group in §3, the zero-semigroup in §4, and the power-semigroup in §5.

§1. Greatest group.
Let S be a finite semigroup whose only one idempotent is e.

Lemma 1. If a finite one-idempotent semigroup S satisfies Se==S (or eS=S),
then S is a group.

Proof. Our proof is only restricted to the case that Se =S, the other
being analogous. For all x € Se, when x is represented by x =ye, y €S, we
get xe = (ye)e = y(ee) = ye = x. Hence e is a right-identity of Se. Since xS
is a subsemigroup of S, it contains this e, in other words, there exists z¢S
such that xz =¢ for any x€S. Thus S has been proved to be a group.

Theorem 1. Let S be a finite one-idempotent semigroup and let G = Se.
Then the subset G has the following properties :
(1) G is the greatest group® in S, and G = eS.
(2) G is the least ideal of S.
(3) e commutes with every x € S.
(4) S is homomorphic on G.

1> By the greatest group G in S we mean the group G such that G G for all group G
contained in S. The least ideal is dually defined.
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Proof. (1) G is a subsemigroup whose idempotent is no other than e,
and satisfies Ge = G. It follows from Lemma 1 that G is a group. Since e
is the identity of the group G, we have Se¢= G = Ge =G ¢S, similarly
eS Se; and so Se —=eS. Next, let G; be any group contained in S. The
element ¢ is at the same time an identity of G,, and we have G, = G;e  Se
= G, showing that G is the greatest group in S.

(2) Immediately it follows that
SG = S(Se) = (SS)e C Se =G, and similarly GSCG.

Hence G is an ideal. Let @ be any ideal of S. Then ¢€@, for @ is a sub-
semigroup of S. Therefore we have G = Se C SQ C Q. This shows that G
is the least ideal of S.

(3) By dint of the fact that ¢ commutes with every element xe of G,
we get
xe = x(ee) = (ve)e = e(xe) = (ex)e = elex) = (ce)x = ex .

(4) The mapping ¢ of S onto G = Se is defined as @(x) = xe. This ¢ is
proved to be a homomorphism by the formula:

P(X)p(y) = (xe) ye) = x(ey)e = x(ye)e = (xy)ee) = (xy)e = @p(xy)
where x, y €S and ey = ye because of the above (3). q.e.d.

In particular if ¢ is a right (left) identity, S is a group by Lemma 1.
If ¢ is a right (left) zero, ¢ is a two-sided zero. Then, however, Theorem 1
becomes trivial, whence we must investigate this case on different standpoints
(cf. §4).

All one-idempotent semigroups of order® n are classified into # classes
according to the order k(k=1, 2, ..., n) of the greatest group in itself. We
call the order n the d-order n of S, and call the order k the g-order of S, or
we say that S is of g-order k£ under d-order ». Especially when S is of
g-order 1, S is called a zero-semigroup® or z-semigroup.

§2. wv-order and the condition for a group.

The subset SS or S? is called the value-range of the semigroup S. When
the order of the value-range is m, we say that S is of v-order m. This v-
order plays a remarkable role in our theory as much as the g-order does.

2> By “order of S’ we mean the number of elements of S.
3) « Zero-semigroup ” defined here is more general than what was done by Rees.



On Finite One-idempotent Semigroups 13

Among the above three kinds of orders, #, #, £, obviously holds £ < m < #.
If the v-order of S equals to its d-order, S is said to be universal.

Now, with respect to universal one-idempotent semigroups, the following
Theorem 2 is worthy of our notice. In the below Lemma 2, S is not necessarily
one-idempotent.

Lemma 2. Let S be a finite universal semigroup with a zevo. If S has a
non-void subset X such that X C SX and X~ S(S—X)= ¢, then S contains an
idempotent different from zero.

Proof. Let n be the d-order of S and / the order of X. We shall prove
the lemma by induction with respect to /. At first when /=1, setting
X={p}, p==0%, we have p = xp for some x€S. Let us denote by A the
set of above x for fixed p, then 0 € A and A forms a subsemigroup because
(x)p=x(yp)=2xp=p for x,y€ A; and so A contains an idempotent, con-
sequently S has an idemptotent, which is different from zero.

Next, we shall prove the case for / under the assumption that the lemma
holds for 7 </—1. Take any ecX such that Sa~ X==¢, then we may
assume Se¢ D X without losing generality. For, if there is an element @ which
satisfies X Sa, a € X, it follows that @ = xa for some x€S; and then we
can apply again the method used in the case when /=1.

Now, let X;=X—-Sa~X (4 ¢), we get S(S—X;)=S(S—X)YSa, and
XiASS—X)CXASS—=X)=¢, while X;~Se=¢. Hence X,~S(S—X))
= ¢ . Furthermore, since S is universal, X; C SS= S(S—X;)YSX;, so that
X, SX;. X, being of order less than /, the supposition of induction enables
us to conclude that S has an idempotent which is not zero. This complets
the proof.

Corollary. If S is a finite zero-semigroup, then S is non-universal.

Proof. Suppose that S is universal. Setting X = S— {0}, X satisfies the
condition of Lemma 2. Therefore S contains an idempotent different from
zero, contradicting with the assumption.

Theorem 2. Let S be a fimte one-idempotent semigroup. If S is universal,
then S is a group.

Proof. Let us suppose that S is not a group. Then, by Theorem 1, S
has the greatest group G(==S) which is an ideal at the same time, that is, k< #>

49 The condition X ~S(S - X)=¢ leads to p==0.
50 We denote by »n the d-order, by & the g-order of .S respectively.
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according as notations in the end of §1. Denote by S* the difference semi-
group of S modulo G, which is due to Rees [2]. Clearly S* is a zero-semigroup
of order 7, 2 < i< n. Now, let ¢* be an arbitrary non-zero element of S*.

Then the inverse image a(€S) of a* is represented as @ = bc®, where
beS—G, ceS—G, for S is universal. Hence a* = b*c* where b* € S*, ¢* € S*;
it follows that S* is universal. This conflicts with the Corollary.

From Theorem 2, we conclude that if a semigroup S has g-order less than
d-order, S is non-universal.

§ 3. Enclosed extension of a group.

If the value-range S? of S coincides with its greatest group G and S is
not a group, S is called an enclosed extension of the group G. This paragraph
is an attempt to clear its structure. Now let us denote by a,(i =1, ---, k) all
elements of G and by p, the number of elements x € S which are mapped into
@, €G by the homomorphism ¢ which is introduced in the proof of (4) of
Theorem 1. Of course pz =1. Then an enclosed extension S=f{a;, -, a,}
of the group G =f{a,, - , B<'m, is associated with an ordered system
of positive integers (p,, --- ,pk) where Z‘, Di=mn.

The system (p,, -+, py) is termed the character of S, because the system
determines S as the following theorems indicate.

Theorem 3, If there are given a group G =fa,, ---,a,}, a set S=f{a,, -,
ay, -, ,,,} which contains G, and an ordered system of positive integers ( py, -, py)
where 2 bi=mn, py=1, then an enclosed extension S of G admitting (p, -, py)

to be zts character is determined uniquely except for isomorphism.

Proof. At first we assign a mapping ¢: aii pla)=ea,= a,eP(i=1, -, n)
such that @ has (p,, ---, p,) as its character, in other words, the number of
elements x €S which fulfil o(x)=g¢a, is p,(i =1, ---,k). We can then prove
that the extension S is uniquely constructed under the above . In fact,
let us define the product xy in S as xy = @(x)@(»)®. Then, since @ maps an
element of G into itself, we have @(xy)= @(x)@(y) which proves that ¢ is a
homomorphism. Conversely it is obvious that the above definition of xy in S
is necessary under the assumption that ¢ is a homomorphism.

Next, we shall prove the uniqueness of S except for isomorphism. Let,

6 Of course b=F0, c=0, so that 5*==0%, c*==0*.
7 e is an idempotent of S, i.e., the unit of G; and cf course ¢(a;) < G.
8 The product in the right side is that in G.
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now, ¢’ be another mapping (of S on G) which has a character in common
with ¢@; and then it is sufficient to show that two semigroups obtained by
o and ¢’ are isomorphic each other. Now the common character of ¢ and ¢
enables us to give a permutation® + of S on itself associating x with one of
elements x’, which satisfy

1) »"=x for xeG,
(2) ¢'(&)y=@¢(x) for x€S.
Then we get, for every x,y€S,

V(WA 3) = @' (Y (5)) ( YEWA(P)EG, and ¢/(z)=2z for z€G)
= @'(Y(x))p'(y(3)) (by homomorphism)

= p(X)p(9) (by 2) )
= p(xy) (by homomorphism)
=Xy (v p(2)==2 for 2€G)
= (xy). (by (1) )

Therefore  is an isomomorphism. Thus the theorem has been proved.

Now, G and » given, under what condition is an extension obtained by
(p1, -, b,) isomorphic with that obtained by (gi,:,¢:)? Generally, when
(Dy» ;) is got by permutating (p., -, i), we denote it by

(p,'l,---,ﬁik)'—:o‘(ﬁl,...’pk) where 0_2(1 2 R\,

il 1‘2 ik/ >
that is, we say that (p,, -, p,) is permutated to ( D, s b;.) by ¢. Similarly,
1
if we apply o to G, we mean a permutation in G written

o
ciay, ,a} = {a; ,,a;} where a; —a;,,

or we say that (a1, ,a;) is permutated to (a; ,-,4;).

Theorem 4. There are given the set S = {a,, -, a,} and the group
G=fa,, - ,a}. Let us denote by S, an enclosed extension of G with a character
(D1, > 00, by S, ome with (qy, - ,qy), and suppose that a, is an idempotent in
each of S, and S,. In order that S, is isomorphic with S,, it is necessary and
sufficient that the following conditions are satisfied.

1)y hHh=a.
(2) There exists a permutation o such that
a) (Pr,,py) is permutated to (g, ,q;) by o, and
b) the mapping {ay, - ,a} —>olay, -, a;} is an automorphism in the
group G.

9 A permutation is a one to one mapping of S onto itself.
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Proof. At first we shall prove the necessity of the theorem. Let us
suppose that S, is mapped isomorphically on S, by 5. Since the greatest group
of S, is mapped on that of S, by 7, the contraction & of  to G is an
automorphism of G. It is obvious that (p,, -, ) is permutated to (g, -, ¢qy)
because of the isomorphism 5. Now by ¢, and ¢, we mean homomorphisms
of S, and S, on G respectively. Then we have p, =g¢,, because the idempotent
of S, is mapped to the idempotent of S, and ¢,(x)=@a; implies @ (5(x))=a,.

Next, we shall prove the sufficiency. Suppose that (p,, p,, -, D) and
(p1,qs, -+, q;) satisfy the conditions (1) and (2) in this theorem. Then we
can define a permutation 5 of S, on S, ie., {a;qy, -, @uy} =1nlayr, -, a,} with
the properties as follow :

(1) the contraction 5 to G coincides with o,
(2) j@&y=i for i=1,k+1,k+2,---, n.
(3) gplex)=e-x where e-x is the product in S,.

Considering that xy = (ex)(ey) for x,y€S,, x-y =(e-x)-(e-y) for x,y€S,,
and 5(x)=x for x € S—G, we have

7(xy) = 7((ex)ey)) = nlex)n(ey) = (e- x)-(e:y) = x-y = (%) 9(y) for x,y €S—G,
7(bx) = n(blex)) = 7(b)- nlex) = 5(b)-(e-x) = n(b)-x for beG, xe S—G.

Similarly 5(xb)= x.9(b) for be€G, xe€S—G.
Hence 7 proves to be an isomorphism of S, on S,. Thus the proof of
the theorem has been completed.

§4. Zero-semigroups.

In this paragraph we shall relate to some remarkable properties of a
zero-semigroup S. Let us denote by O the zero of S. We mean by an annihi-
lator of S an element @ € S which satisfies ax =xa =0 for all x¢S. Of course
a two-sided zero is an annihilator. The following theorem is of significance
for the study of its structure.

Theorem 5. A finite zero-semigroup S of d-ovder no less than 2 has at least
one annihilator except the zero.
Proof. The theorem holds if the d-order is 2, since a zero-semigroup of
d-order 2 is no other than
0a

0l00
al00
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We shall prove the theorem for #» under the assumption of validity for
n—1. By the corollary in § 2, S has a subset!® S,_; such that S*CS,_,, for
which we set S=S,.,VY {p}, p€S,_1. Since S,.; is clearly a zero-semigroup,
we can find a non-zero annihilator & of S,_;. Here we may assume that
either bp==0 or pb=0. For if bp=pb=0, b becomes an annihilator of S,
solving the present problem. Now, let us consider the element ¢=pbp in S,
for which the two cases may be considered: ¢=0, ¢=40.

(1) When ¢=0 with bp=0, it will be proved that bp is an annihilator
of S.

In fact, clearly p(bp)=0 and 2(bp) = (2b)p =0p =0 for z¢S,_,,
while (bp)e =0b(pz)=0 for z€S,.; because pzeS,_;.
It follows that bp(==0) is an annihilator of S.

(2) When ¢==0, c itself is one required.
Because, for every z €S,

(pbp)z = pib(pz)} = p0 =0, and 2(pbp)= {(2p)b} p=0p =0

Since pz, zp€S,_,. Thus we completes the proof.

Theorem 6. Let S be a zero-semigroup of d-ovder n. We can put all
elements of S in order

Ay, 0z, 50y,
such that, setting S,=1ia,,--,a;}, it holds that
SS, S, and S,SCS,., for 1 =23, - ,n.

Proof. Let a, be the zero and @, be an annihilator different from zero.
(see Theorem 5.) Obviously S,S S, S, SS, S, S,; S, is an ideal of S.
Now, after the ideal S,_;,=f{a,,-,a,_,} (for i >=3) is constructed such that
S,-:SCS,., and SS, ,CS,;_,, we obtain S, by adding @, whose image a¥™"
into the difference semigroup!® S~ =(S: S, ;) of Smodulo S;_, is a non-zero
annihilator, that is, a¢=S¢"D {04} and S¥Paf~P {04 P}. Consequently
we have ¢,SCS,._,, Sa; CS,_,. Then it follows immediately

5:S=8,:5Va, S S;2VY Sy = Sima,

similarly SS, < S;_,. The proof of the theorem has been accomplished.

100 S,; is composed of -1 elements.
11> Rees denoted by S*=S — G the difference semigroup S* of S modulo G, but we denote it
by S*=(S :G).
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By Theorem 6, one part of the structure of one-idempotent semigroups
is clarified.
Theorem 6'. Let S be a one-idempotent semigroup of d-order n. We can
put all elements of S in order
@1y Qo v 5 Ars Qryys 5 Oy
such that
1y G=\ia,, ,a,} is the greatest group of S.
(2) Setting S,=ia,, - ,a;}, it holds that
SS, S,;-, and S,SCS,_; for i=Fk+1,k+2, .-, n.

§ 5. Power semigroups.

Finally we take up here finite power semigroups as the simplest example
of one-idempotent semigroups. Generally S is called a power semigroup if it
is generated by only one element @ of S, that is, S is composed of powers of
a: S={a, e a®, .-, a"---}.

In particular, if S is finite, then some elements appear infinitely many times
in this power sequence.

Let # be the d-order of S, A, be the minimum of positive integers A
which have A greater than A such that ¢*=a", and u, be the minimum of
positive integers p which satisfy a*o =a* where p>2,'». Then we see that
po=n+1. Poole termed this A, “the order ”, but here we call it the “origin”
of S not to confuse with the orders already defined.

It follows that a*==a* for A< X, and a*=a* for A,k >, if and only if

=« (mod. gy—x,). Then the following theorem is easily proved.

Theoxrem 7. A finite power semigroup S is one-idempotent and commutative,

and the set
aro ot y e a1

forms the greatest group of S, which is cyclic.

Now, let S and S’ be two power semigroups with d-orders #, #’, and with
the origins A,, A,/ respectively. Clearly S is isomorphic with S’ if and only
if w=wn" and A,=2x,. While the d-order = is fixed, only the origin deter-
mines the types of power semigroups.

Theorem 8. The d-order and the origin characterize a finite power semi-

12) See [1] or [2].
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group. It follows from this that we have n types of mnon-isomorphic power
semigroups of d-order n.

In the end of this paper, we shall give the following theorem referring
to power zero semigroups.

Theorem 9. If S is a zero-semigroup with d-orvder n and with v-order
n—1, then S is a power semigroup.

Proof. Theorem 6 makes it possible to put all elements of S in order'®
ay, Ay, -+, Ay

such that SS,S,;.; and S,SCS,_; where S, = {a;, ---, @,}.
We may assume that S=S,, S*=2S,.,. Now we shall prove that

a, = a;,,a,

under the supposition @, =@, ,a, A=i+1,i+2, ... n—1).
By SS,CS,.,, and S;SCS,_,, we get easily @, €(S—S,)? in other words

a, €(S—S,)a;., Y (S—S)a;,. VY - Y (S=S,)a,
or a, €(S—S,)a,
From the assumption of induction, it follows that
Ay = ;.4 .
On the other hand, by SS,_,S,., and S,.,SCS,.., we get

@y, €SS—(SS,_1VY S, ,S), that is, a,_, =a?.

Thus every element of S is proved to be represented as a power of a,.

Addendum.

As the corollaries of Theorem 6, 6/, we add the following two.

Corollary. A zero-semigroup S of d-ovder n (n">2) is homomorphic on a
zero-semigroup of d-ovder n—i, 1 <7 <n—1.

Proof. S,,, mentioned in Theorem 6 is an ideal. It is sufficient to

consider the difference semigroups of S modulo S,,,.

Corollary. A one-idempotent semigroup S of d-order n, and of g-order k
is homomorphic on a zevo-semigroup of d-ovder n—i, k—1 <i < n—1.

13) Of course, a; is a zero, and a, is an annihilator distinct from zero.
19 For, ax=arxs1a, (A=i+1,i4+2, -, n—-1).
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The proofs of some theorems in this paper have been much improved in
my paper to appear: “On compact one-idempotent semigroups.”
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