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In classical analysis, the absolute values of functions of complex number
are closely connected with their analyticity. If the absolute values of a
regular function are a constant in a neighbourhood of a point, itis a con-
stant on whole domain on which it is defined and regular. Therefore, if the
absolute values of a function are a constant on whole domain, it is a constant.
In complex-Banach-spaces, the norms play the part of the absolute values of
complex numbers, but the norms of analytic functions do not seem to be so
closely connected with their analyticity as that of the absolute values of
complex numbers. That is, there exist functions whose norms are constants
on their domains and yet are not constants. We shall call such a function
“an analytic function of norm-comstant”. First of all, the examples of the
analytic function of norm-constant are reported and then the necessary and
sufficient conditions that a function should be an analytic function of norm-
constant are researched, in §1. In §2, the variation of the norm of an
analytic function is researched using the method of M(7) in classical analysis.
The variation of the extended M(7») characterizes the theory of functions in
complex-Banach-spaces.

§1. Analytic functions of norm-constant

Let %y, %12, X21, X5 be complex numbers. The set of matrixes of 2-2-types
X = <x11 zm becomes a complex-Banach-space O, when we define || X||=

Xa1 Koz
Max (|x1], [%12], |%21], [%22]). Let

_ _(p O\ 0 =«
V== (8 0) * (s, ),
where 0<p<co, then f(X) is an Q-valued function defined on Q. Clearly,
f(X) is a continuous function. Let a be a complex variable, then

f(X+atY)=p<1 x12>+p< . y”)a.

Xo1 Xoo Vo1 Yoo
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This shows that f(X) is G-differentiable. Therefore, f(X) is analytic on
whole spaces. We investigate the variety of the norm of f(X) in || X|| £1.
When || X|| £1, |x,5|.21, where i, j=1, 2. Therefore, we have

x
o= (s, 22)]
=p Max (1, |xp], [%a1], [¥22])
=p.
Thus we see that the norm of f(X) is a constant p, when || X|| .21, but f( X)
is not a constant. Moreover, ||f(x)||=p, when |x;|< oo, x| L1, |251] 21,
and |x,,| £ 1.
Now, an another example is reported. Let N be an arbitrary positive

1
number and put f(X)=<N;}\f1: <N;}\;¢2>’ """ ’ <[2%n>n y >, where
X=(x, %3, ...... N ) varies in the sphere ||X||< N in complex-/,-

1
spaces and f(X) takes its values in complex-D,-spaces. (NZ'*}(;")" is con-

sidered on one branch of its Riemann surfaces. Then f(X) is an one-valued

NZE\;C "—1, when ||X||< N in complex-

analytic function and ||f(X)|| = sup
1<n

l,-spaces.

A function defined in a bounded domain is not necessary a constant
even if the norm of the function is a constant on whole domain. Now, we
investigate of analytic functions whose norms are constants on whole spaces.
Let E, and E, be two complex-Banach-spaces.

Theorem 1. Let E,-valued function f(x) be an analytic function defined
Sfor all finite values in Ey. If || f(x)]|=0(||x]|*) as ||x||> oo, f(x) is a poly-
nomial of degree k at most.

Proof. Since f(x) is analytic for all finite values in E;, f(ax) is

expressed as follows
Sflax)= Zjoh,,(x)ac”,

for an arbitrary point x and an arbitrary complex number «, where 7,(x) is
a homogeneous polynomial of degree #n. Let C be a circle |a|=R on the
complex-«-plane, then we have

1 S flax) 4,

)= g )

1 (> f(Re**x)
= 2;] do,

o R"e™
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where a@ = Re*?(0 20 ~27). Therefore, we have

1 (SR )|
Il < 5 [ KD g

= 0 (R¥||2([*)/R",

for sufficiently larg R, because || f(x)||=0(]|x||*), as ||#||]—>cc. R can be taken
as large as we like, ||/, (x)|]|=0, when »_>k. Since x is an arbitrary point
of E, h,(x)=0, when »_>k. Thus we have f(x)= ék,,(x), which is a
polynomial of degree k2 at most. "

Corollary® 1. If f(x) is analytic and satisfies ||f(x)|| LM on whole spaces,
then f(x) is a constant.

Proof. Appealing to Theorem 1 for £=0, we have f(x)=s(0).

Covollary 2. If f(x) is analytic and || f(x)||=c on whole spaces, then
f(x) is a constant.

An analytic function whose norm is a constant on whole space is a
constant but a function is not necessarily a constant, even if the norm of
the function is a constant on a bounded domain. It seems to be a character
of the function as well as the boundedness of the function that the norm of
the function is a constant. Thus, the necessary and sufficient condition that
the norm of the function should be a constant must be investigated. An
open and connected set is called a domain.

Lemma. If f(x) is analytic on a domain D, the set of x which satisfies
|f (|| =c is a (relative) closed set in D, where ¢ is a constant.

Proof. Suppose that a sequence {x,} converges to x, in D and satisfies
fx)l|=¢c for n=1,2, 3, ...... . Since f(x) is continuous and satisfies

Gl — PG | 217G — £l im |Gl =1 Gl
and we have ||f(%,)]|=c¢. This completes the proof.

Theorem 2. If an analytic function f(x) defined on D satisfies ||f(x)|| LM
and moreover ||f(x,)|| =M for a point x, in D, ||f(x)||=M. (The inverse is
also true.)

Proof. Let S be a set of point # which satisfies ||f(x)||=M in D. S is
not a null set by the assumption. Let x, be an arbitrary point of S. Since
x, is an inner point of D, there exists a neighbourhood V(x,), which is a set
of point x satisfying ||x—=x,||< p, in D. Suppose that S™> V(x,), then there
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exists a point y in V(x,)/\CS. Since f(x) is analytic in D,

ﬂngﬂﬂﬁﬂgjﬁw,
7Tl Je (a4

where C is a circle |a|=1. Clearly x+a(y—x,)€ V(x,) when acC. Let
o =¢e'%0.20 ~27), then we have

Gl < o= [Tl e, do.

Since f(x) is continuous at y and satisfies || f(¥)|| < M, there exist a positive
number & and § satisfying || f(x, +e’(y—x,))|| < M—¢& when || £38.
Then we have,

e [ W VO N L

7T

[ It ety —xode

M-8

7T

contradicting to that x,€S. Therefore, S V(x,) and we see that S is an
open set. If D==S, D=S+D/\CS, where D/\CS is an open set, because
S is a closed set by Lemma. This contradicts to that D is connected. Therefore,
D =S, which shows that the norm of f(x) is a constant M on D.

Theorem 3. (The extended theovem of Lindelof)) If an analytic function
f(x) defined on a bounded domain D satisfies the followig conditions: (1) there
exists a neighbourhood V(x) of x for an arbitrary positive number & and an
arbitrary point x on the boundary of D and ||f()||< M+¢& when y ¢ V(x)\D,
(2) ||f(x)ll =M for a point x, in D, then || f(x)]|=M on D. Therefore, if
|| f(®)l]| is not a constant, || f(x)||< M in D.

Proof. Let y be a point in D and a be a complex variable. f(ay)is an
analytic function of « while «wy € D. Plainly, a set E composed of « which
satisfies ay € D is an open set. Now, let S be a component of 1 in E, then
S is a bounded domain in a-plane. Let a boundary of S be I', then, if «a, €T,
«,y is a boundary point of D. From the assumption (1), for an arbitrary
positive number &, there exists a neighbourhood V(w,y) and ||f(x)||< M+¢&
when x € V(a,y)\ D. For a sufficiently small positive number & which is
smaller than the distance between 1 and I', ay € V(«,y), when |a—«,| 28
and then I' is covered by such circles. Since I' is a closed bounded set on
a-plane, it is covered by such circles of finite numbers. Accordingly, there
are some domain S, surrounded by the arcs of finite numbers. Among S,,
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let S, be a domain which includes 1. Since ||f(ey)|| is subharmonic about «,
I f(ay)l| takes its maximum on the boundary of S, and we see that || f(ay)||<”
M+¢, when a€S,. Since S;31, || f(»)||<M+¢ and then ||f()|| £ M, because
& is an arbitrary positive number. Thus we see that ||f(x)]| £ M on the
whole domain D, because y is an arbitrary point of D. From the assumption
(2) and Theorem 2, ||f(x)||=M on D. Finally, if ||f(x)|| is not a constant,
the assumption (2) must be false, that is, ||f(x)||< M for all x in D. This
completes the proof.

It is plain that Theorem 2 and Theorem 3 are the necessary conditions
|| f(x)]] to be a constant.

§2. Extended M (7)

Let D be a domain in E; being expected to include the origin without
losing generality and E,-valued function f(x) be analytic in D.

Definition 1. A positive number o is called a radius of norm-constant of
f(x) (with respect to 0), if it satisfies following conditions : (1) || f(x)||=C for all
x in ||x|| Lo, where C is a constant, (2) for an arbitrary positive number &,
there exists in the sphere ||x||< o +& at least a point x on which ||f(x)||==C.

The sphere of radius o is called the sphere of norm-constant of f ().

Definition 2. When x is an arbitrary point on ||x|| =1, r(x) is defined as
the upper limit of v such that || f(ax)||=C (which is a constant) when || .L7.
Then we have the following theorem.

Theorem 4. Put Inf r(x)= o, then o is the radius of norm-constant of f(x).
He =1

Proof. We prove this theorem for 0< o< co, because, when +=0 or
oo, we can discuss as well. Since ||f(0)]|=C, C is independent of the
variation of x on ||x[|=1. When |a|7(x), ||f(ax)||=C, since ||f(ax)|| is
a continuous function of «. Let y be an arbitrary point in 0<|x|| <.

Put x=”%|[, then [[x]]=1 and we have [ f(||3||x)]|=C, since ||3|]| 2o
= Inf 7(x) £ 7(x) and || f(ax)||=C for |a| £7(x). On the other hand, since

—!il;llx [|f (3]l =C. Since y is an arbitrary point in 0 < ||x|| <o, ||f(2)]| =
for all values on 0<_||x|| £o. Considering the fact that || /(0)|| =C, []f(x)l]:
for ||x|| < o. From the definition of &, we see that there exists at least a point
%,, which satisfies || f(x,)||:1=C, in ||x]| < o +¢& for an arbitrary positive number

& Therefore, o is a radius of norm-constant of f(x).

Theorem 5. Let f(x) be analytic in a domain D and f(0)=0. If o -0,
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then f(x) is a constant O, where o is the radius of norm-constant of f(x).

Proof. From the definition of the radius of norm-constant, ||f(x)||=C
when x lies in ||x|| Lo, where C is a constant. Then C=]||f(0)||=0.
Therefore, f(#)=0 on ||x|| £Lo. Let the largest sphere including 0 in D be
[[#[|<R. If o< R and y is an arbitrary point in [{x||< R, f(y):f}lz,,(y).
Then we have "

(=5 | L aa,

i Je a?t?

where C is a circle such that |a]|=-2-. While, f(ay)=0 when ||lay||=0.

[121]
Then we have %,(y)=0, where n=1,2,3, ...... , and we have f(y)=0. This

shows that f(x)=0 in ||x||< R, since y is an arbitrary point in ||z||< K. By
the analytic continuation, f(x)=0 on D.

Covollary. Let f(x) be analytic in a domain D and put g(x)= f(x)—f(0).
If a radius of norm-constant of g(x) is not zero, then f(x) is a constant on D.
Proof. Appealing to Theorem 5, g(x)=0 on D and then f(x)=f(0) on D.
Definition 3. For an arbitrary point x on ||x||=1, we define M(7, x)=
Max || f(ax)||, where a is a complex variable. Put M(r)= Sup || f(x)||.
lat|=r lzli=r
Theorem 6. If f(x)is analytic in ||x||< R and r<_R, (1) M(r) =I"S]up 1|f (),
zli<r
(2) M(r)=Sup M(r, x), (3) M(r) =~ M(r") when r L r', where ' <_R.
lHzli=1
Proof of (1). Clearly M(r)g&llpl]f(x)”. If M(r)<lSupr(x)H, there
la|l<r lzll<r

exists in ||#]||< 7 a point x, which satisfies M(7)<|| f(#,)|]. f(ax,)is an analytic
S

contradict-

function of @ in |a|<_ & Rl and then || f(ax,)|| is subharmonic in |a|<—;
0

4
[1%l|

Thus we see

Therefore, ||f(ax,)|| takes its maximum on the boundary |«|=
ing to the fact that || £(x,)||>>M(r)>||f (ax,)|l, where l“[:llxr 1
that M(r) = Sup |/ (x)].

Proof of (2). Since ||f(ax)|| is a continuous function of «, there exists
«, which satisfies | f(ax)||= ll\aflle:li( || flax)|| =M(r, %), |a,|=r. Then
M(r, x)==||f(ayx)|| £ M(r), for an arbitrary point x on ||x|]|=1. Hence,
Sup M(7, x)4M(r) On the other hand, || f(¥)|| £ M(#, x), when ||y|| =7 and

lHali=1

y =rx. Hence, l]f(y)]\,_/:SupM(r x) for an arbitrary point y on |[x||=7.
Heli=1
Then we have M(7) .~ Sup M(r, x). Thus we see that M(»)= Sup M (7, x).
Hzll=1

lmil=1

Proof of (3). For an arbitrary positive number &, there exists a point x,
on ||x||=r satisfying M(r)—¢& L||f(%,)]. Appealing to (1), |[f (x|l £ M),
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since ||x,||=7< 7. Then we have M(r)—&< M(r") for an arbitrary positive
number & Hence, M(») 2 M(»").

Theorem 7. Let o be the upper limit of r which satisfies M(r)=|f(0)|.
Then o is the radius of norm-constant of f(x), where f(0)==0.

Proof. For an arbitrary positive number &, there exists » which satisfies
o—&<r and M(r)=||f(0)|. By Theorem 6(1), || f(x)|| 2 M(r), when ||x|| £7.
Thus we have ||f(x)]|=]|f(0)|]| on [|x]| L7, appealing to Theoren 2. Let x,
be an arbitrary point on ||x]| =0 and ' be a point being included in both
spheres ||x—x,|| £& and ||x|| L7, then || f(x")||=1|f(0)]. Since ||f(x)|| is
continuous, || f(0)|| = ii,{’rtHf(x’)][ =||f(xy)||. Thus we see that || f(x)||=||f(0)|],
when x lies on ||x]| £ o. From the definition of o, || f(x)||==]|f(0)]] on ||x|| £7,
when » ~>¢. This completes the proof.

Theorem 8. (Extended Hadamard’s three spheres theovem). If v,< 7,<7s,

log 73 —log ry log 7o —log 7

M(rz) e M(7’1)Iog rz3—logry M(rs)log rg—logry -

Proof. Let x be an arbitrary point on ||#||=1 and p be a positive

number which satisfies 7{ M(7,, x) =175 M(7;, x). Put F(a)= «’ f(ax), where

« is a complex variable. Since ||F(«)|| is a subharmonic function of «, we
have

M(TZ, x) 4M(71’ x)aM(7’3, x)l—ay
log7;—log 7,

log7,—log 7,

_,__logr,—logr, .
1—60 = = By appealing to Theorem 6-(2), we have

M(r,)=Sup M(rz, %) £ Sup (M(ry, 2} M(rs, %y'%)

as well as the case of complex functions, where 6= and

lzll=1

4 Sup M(rlr x)o Sup M(r:i ’ x)l—e
lzil=1 =zl =1

= (Sup M(r,, x))° (Sup M (75, %))*°
=1 lzl1=1

= M(r,)? M(r;)'"°,
since #° and #'~¢ is continuous when ¢ >0. This completes the proof.

Theorem 9. If 7, < 7, and M(r,)= M(r,), f(x) is the function of norm-
constant on ||x|| L7, Therefore, if f(x) is not a function of morm-constant in
|l2]| £ 7s, M(ry)<M(ry), when r,< 7.

Proof. If O0<77»<Twy, M(r)) ZM(rY M(r,)'"® by Theorem 8, where

g=1087=logn g g_logr—logr g ar(y) = M(r,), which is not
log vo—log » log r,—log 7
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less than || £(0)|| by Theorem 6-(1), M(7,) ZM(r) M(r,)*~°, then M(r,)° L M(r).
Since 0 < 0<1, M(r,) 2 M(r). On the other hand, M(») L M(7,), by Theorem
6-(3). Then we have M(r)= M(r,)= M(r,;). Since f(x) is continuous, for
an arbitrary positive number &, there exists a positive number § such that
LF)—FOIl <& when |l#] <8 If 7<8, M(r)=Supl|lf() £I[LFO)]+&.
Then we have, M(r,) £ ||f(0)]|+& Since & is an arbitrary positive number,
M(r,)=]|f(0)]]. Appealing to Theorem 2, f(x) is the function of norm-constant
on ||x|| £L7,. Therefore, if f(x)is not a function of norm-constant on ||x|| £ 73,
M(ry) << M(ry).

Corollary. If f(x) is analytic in ||x|| <" R and the norm of f(x)is a constant,
when 0 <r <||x|| <R, then f(x) is a function of norm-constant on ||x|| <_R.

Proof. Let » <7, <7, <R, M(r,)= M(r,). Appealing to Theorem 9,
f(x) is a function of norm-constant on ||x|]<(7,. Since », can be taken as
close as we like to R, f(x) is a function of norm-constant on ||x|| 2 R.

Definition 4%. If a positive number ) satisfies the following conditions (1)
if 0<r <\, f(x) is analytic and bounded in the spherve defined by ||x|| <7,
(2) if r >\, f(x) can not be analytic and bounded in the spherve defined by
||x|| < 7, then N is called a radius of bound of f(x).

Theorem 10. Let A be the upper limit of v which satisfies M(r)< oo, then
M\ is the radius of bound of f(x).

Proof. For an arbitrary positive number 7, which satisfies 7 < A, M(7)<co.
By Theorem 6-(1), || f(#x)|| £ M(7), when ||x|| £ 7. That is, f(x) is bounded
on ||x||< 7. By the definition of A, it is clear that there does not exist M
which satisfies || f (x)|| £ M when ||x|| < 7, where » >A. Thus we see that
A is the radius of bound of f(x).

Theorem 11. If the radius of norm-constant is infinite, f(x) is a constant.

Proof. Since ||f(x)|| is a constant on whole space, f(x) is a constant by
Corollary 2 of Theorem 1.
Thus we see that M(r) varies generally as follows

M(r)y=1|f(0)], when 027 ~o,
— steadily increases with 7 in the stricter sense, when

o< r< A and tends to +co, as 7 tends to A,
= 4+oo, when X\ . - 7< 7, where v is the radius

of analyticity®® of f(x).
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The following example will practically show the above stated variety of
M(r). Let Qand Q' be complex-/;-spaces and complex-D,-spaces respectively.

X=1(x;, %o, X3, «..... s KXy eeenen ) is a point of Q, where x; is a complex
variable (i=1,2,3, ...... ). Put Q'-valued functions #,(X) defined on Q as
follows

kO(X)z(-%, R )

(X)=(0, x, %z, %3, ...... )

ho(X)=(0, a3, 2%, 3%, ... )

....................................

then f(X)= i}kn (X) is analytic on whole space and has ¢ = ;17, A=1 and
T = 40, -

First of all, we must show that %,(X) is a homogeneous polynomial of
degree n. Since h,(X)eQ!, ||h(X)||= Sup | %01:1% for m=1, 2,3, ...... ,
where || X|| = 1/2[35 |2, since XeQ. It is clear that #,(X) is a continuous

function by the deﬁmtlon of the norm. Since
(X +aY )= (0, x5, 22,1, ...... )+ na(0, 22, A0l Vne1, eenen )+ e ,

h(X +aY) is an analytic function of «.
hlaX)=(0, (ax,)", (@Xyi1)" ... )
=a™0, A2, Xnii, ceiiiiiiinn )
= a"h,(X).

This shows that %,(X) is a homogeneous polynomial of degree .

(1) Proof of 7=+ co.
— 1/Sup hm Y[R XD

Hzjl =

— 1/Sup Tim /Sup [z [

Hzj|=1 n>o

= 1/Sup Tim Souplxwl
= +oo, since |%,|—0, when n—+co.
(2) Proof of A =1.
x:l/@VWXTXI"'UhmJ Sup |x,,["=1.

llall=1, 01
1

(3) Proof of o — E'
Ll = Sup (3, 1Fmel, 101 When IX]| 25, 35 1ml* 7 ],

then |x, 4; for n > 1. Thus we have )m'j [x,m["z_ f}lx,wlz. On the other
n=2 n=9
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halldv ;z{l'xn+tl2 éé ék

4 ’
1 o0
then el 24 = 3] 12l
o 1 :7]' - = 1 3)
Then  [3300] L5l + 35 el 28 = B lnl+ 3} 1 al" < -
Thus we have, || f(X)|| = %, when [[X [[4%. For an arbitrary positive number
&, put X = <%+e, 0,0, ... ) then [|f(X)||=Sup (é_ %_%) = 5 +&. This
shows that ¢ = 5 -
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