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Some Remarks on Semi-groups and All Types
of Semi-groups of Order 2, 3.

Takayuki Tamura

Mathematical Institute, Gakugei, College, Tokushima University,
(Received Szptember 30, 1952)

In this paper we shall relate first to a certain necessary and sufficient condi-
tion for an algebra to be a semi-group and some properties of its principal
ideals(1J® as the addendum to our results in this Journal, vol 2, secondly to
some semi-group extensions, i.e., semi-groups which contain one or two given
semi-groups, and finally we shall utilize them and determine all types of semi-
groups of order 2 and 3. We note that no assumption of finiteness is necessary
in § 1, 2.

§ 1. The Condition and Properties of Semi-group.

It was proved in (2) that the algebra S was a semi-group if{ and only if
it was isomorphic (anti-isomorphic) on the right (left) faithful realization
system. Here we try to establish another condition which is simpler. The pre-
sent notations are somewhat different from those used previously (3). The

signs R: , L;\stand for two different meanings as the case may be: one is the
realization of g, i.e, the mapping? of S into itself, I?Aa(x):xia, Lz(x):am, the
other is the subset, called principal ideal. The equality as the set is written
R:;-:R: to distinguish it from the equality R::R(\b as the mapping. While the
discussion is proceeded under an operation, the sign “1” may be omitted.

A A AA D
Theorem 1. The algebra S(A) is a semi-groud if and only if R Ly=L R, for

every a, b e S.
More generally,
Theorem 2. L2t 2 and p b2 semi-groud obzrations definzd in S. It holds that
A A B
Az p (4 if and only if ReL,=LoRy, for every a, b € S.
Proof. The theorems are easily obtained from the following.

{RoL, J= I R |  Lo(xu2) = bA(xua),

{ LZRZ} (1) = RZ{L;\ (8) | = Re(Ax) = bdx) e

0) Numbers in brackets [ ] refer to the refarences at the end of the paper.
1) We called it a trarsformation previously (2].

A A Af A
2) We defined {RaLb}(x)=Lb{Ra(x)} in (2]
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ifor every a, b, x ¢ S. It becomes Theorem 1 in case that 1=4 .

Theorem 3. If xe¢ Ry, then Ry, c Ry, and if x ¢ L, then L, c L,.

Froof, x=ya for some yeS. 2x=2(ya)=(zy)a ifor any ze¢S; hence R,c R, .
Similarly Ly L, .

Let S be a semi-group with one at least idempotent hereafter.

Theorem 4. Let a b2 an idembotent of S.

(1) IfxeRq, thm xa=x .

(2) If and only if R“i:S , @ 1S a right unit.

(3) If Ru={a} and ab=b , thmn szi{b}.
k2
(4) If R«=S and ac=ab, then xc=xb for all xeS.

In ths dual cases thzy arz similar except slight modi fication.

Proof. (1) Since x=ya ior some ye S, xa=(ya)a=y(aa)=ya=x. (2) is evident
by (1). (3) xb=x(ab)=(xa b=cb=>bfor allx. (4) Using (2), xc= (xa)c=x(ac) =x(ab)
=(xa)b=xb.

§ 2 Semi-group Extensions

Let A and B be disjoint semi-groups with the operations i and g respecti-
vely. We shall construct some sorts of semi-proups which include A and B as
the sub-semi-groups keeping the operations invariant.

The set of all pairs (x, y) where x¢ A and ye B is called the direct product
of A and B. Its operation v is defined as (x, y) v (¥, ¥)=(x iz, yuy). Then we
have without difficulty

Theorem 5. Thz direct product D(v) of semi-groups A1) and B(u) is a semi-

group.
The union C of A(1) and B(u) will become a semi-group, if we give such opera-
tions as seen in the below theorems, which are all proved by dint of Theorem
1. In the following theorems we don’t mention that A(Q) and B(ux) are semi-
groups, A)NB()=0 and C(Y)=AADHUB(n).

Theorem 6. If vy is given as:

Xvy=%x24y for x, ye A

Xyy=xuy for x, ye B

Xyy=yvx=y for xe€ A, ye B,
then C(v) is a semi-group.

v A \
Before the proof we explain the notaions. By Rz:(Rz,R:)we mean the map-
v v A v 7
ping R, of C into itself by which R.(2)=R.(z) for ze A, Rz(z):R/x(z) for zeB.
Especially the invariant mapping is denoted by E, and the mapping of A or B

AA A A A A
into only an element p is denoted by Z,. We oiten denote R,L,=L,R, byR.~L,

for short.
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v A v A . v 3 v
Proof. Since Ry=(R, E), L,=(L, E) for pe A , and Rq:<zq, Rq), L=
(Z,,, L’;) for ge B, we have immediately
v v A % " “° 22 A vy
Rqu:(pr E)(Zm Lq):(zqy Lq):—‘-(zq: Lq)(Rp, E>:L0Rp

v

oG LAY / % vy vy /N A \ v
Similarly R,L,=(Z,K,)=L,R, , RuLy=(RyL, E):Lpze,,,
vV ; *o e v v
R’IL']:(Z‘HMJ, Ran):Lo Rq .

Theorem 7. Supbhose that A(R) has a two-sided zero 0. If v is defined as
xvy=xly forx,yeA, xyvy=xpuy forx yeb,
xyvy=yvx=0 for xe A, yeB,

then C(v) is a semi-group.

N M A v
Proof. Since K,=(R,, Z,), L=(L z,) for pe A, and R,=(2, B,), L=(Z.,
LZ) for ge B, we have

v v A A v v vy v v
Ryl,= (Rpr, ZO>:LPR3,, R,L, = (Zo, Za) =L, R,
Y K v v Y 13 ;L\ v v
Rquz(Zo, Zo)ZLqu, Rqu‘—‘<ZOy Ran}:Lq R,.
Theorem 8 Let A(R) include a twrsided zero O and let "'B(p) bz defined as xpy
=x. If C(v) is given as:
xvy=xly for % ye¢A, xyvy=xuy forx, yebB,
xvy=0 for x€ A, ye B, xyvy=x  forxeB, yeA,
then C(v) is a semi-group.

B
Proof. R,=(R, E), L,,z(’LQ, Z.), R,= (2., E), Li=(z. z,) for pe A, qeB.
vy A A vV v v v v v
Then R,Ly=(R,L,, 2,)=L,R), RyLi=(2, 2,)=L,R, ,
v v v v vV v v v
RﬂLv:(Zo’ ZO>:L11R0: R0L7:<Zq’ Zq):Lrqu .

Theorem 9 Let A(R) bz defined as x Ay=y. If v is given as:
xvy=r (fixed e A) forxeA,yeB, xvy=y forxeB, yecA,
Xvy=xly forx, yeA, xvy=xuy forx yeb,
then C(v) is a semi-group.
, )
v v v “ e
Prof. R,=(z, z,), rL.-(& z) R-(z.R) L=(&1))

for pe A, qe B.

" “ A A
3) Ry=E, Ly=2Z; for q¢ B. 4) Ly=E, Rp=2Zp for pe A.
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v v v v v v v v
Then R,L,=(Z, Z,)=L.Rw RyI,—(Z, Z,)-L.Ry

v v v v v oy [ v oy
RL -z, 2z)-1.R, R,1-(z, R,L,)~L.R,
As the special cases we consider the one-adjoined extension i. e., the semi-
group A* obtained by adjoining only an idempotent s to a semi-group A.
Corollary Let C(v)=AQ)U{s}where s€ AR). If v is given as follows, C(v) is a
Semi-groud in cach cach casz of (1)~(5).
(1) xvy=x2y for x, y€A, XysS=syx=x for x¢ A, SYS=Ss.
@) xvy=xly jor x, ye A4, Xys=syx=s for x € A, Sys=Ss.
(3) AQA) has a twosided zero 0.
xyvy=xAy for x, ye A, xySs=syx=0 for x ¢ A,
Sys=s
(4) AQ2) has a two-sided zero 0.
xyy=x2ly for x, ye A, xys=0,
Syx=s for x ¢ A, Sys=s.
(5) AC(A) is defined as x Ay=y.
xyy=x24y for x, ye A, xvs=p (fixed € A) for x ¢ A,
sSvx=x for x € A, Sy Ss=s. :
Next, as to isomorphism between thes same kind of one-adjoined extensions,
we have
Theorem 10. Let C aad Ct bz th: samz kind (1) or (2) of onez-adjoined extensions
of A and Al repectively. C is isomorbhic with C'if and only if A is isomorphic with Al
Proof. Suppose C is isomorphic with C/. Let @ and @' be units or zeros of C and
C! respectively. Then by the uniqueness of a unit or zero we see that a is
mapped to a'. Accordingly A is isomorphic with A’. The converse is clear.
Now we compose non-universal® one-adjoined extension of a given semi-group.
Let B(u)=A(A)U{s} where A{A) is a semi-group and s € A(D).
Theorem 11. If up is defined as:
Xuy=xly for x, ye A, x us=x 2t sux=t21x for x ¢ A, tfiexzd) € A,
sus=tAit,
then B(u) is a Semi-group.

" ;A 6) m A N " ;A % A
Proof. R,= KRI, , t/lp) LI,:<L1,, pu) for pe A, and R; = (R[, t2 t) L:(Lh ta t)
123

123 123 123 13 I3 L W
From them we readily have R,~L,, R,~L,, R.~L, R,~L,

The following theorem is woxth notice.

5) We mean by it that the one-adjoined extension B'u)is a non-universal. S=c [1] with re-

spect to “universal.”

I3 A " A "
6) By sz(Rp Hp) we mean that Rp(z) =R,p(z) for ze¢ A, ond Ry's)=t 1 p.
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Theorem 12. If A(1) has a two-sided unil, the non-universal one-adjoined extensions
are no other than ones ¢bve shown by Theorem 11.

Proof. Suppose that B(z) be the non-universal one-adjoined extension of A(A).
Let @ be a two-sided unit of A(X), and let sua=p, aus=q, and sus=u.

mooy \ 2 \ 2 ( ’ \ I3 ! .
Then Ra:(E, P, L.=\E, g ), moreover we set R;= \Rs, u), L :(Ls, u> Since

% I3
Ry~L, according to Theorem 1, we see that p=g. On the other hand it follows

TS 7 e L ’ PN
from (5) that R;R’,,:Rla, LI:th‘:L;,, concluding that (R;, u):(Rp, s ,up>, KL; , u):

A ! A ! A
(Lp ,bu s), consequently Rs=R,, Li=L, and u=p us=s up. We get at once u=pip.

The proof has been completed.

§ 3 Addendum.

For the preparation of § 4, 5, a few theorems will be added.
Theorem 13. A finite semi-group has at least an idempotent (6.
Theorem 14. A fixite szmi-group S is a rvight (left) groupoid™ if and only if L,=S

(R:=S) for every x€S. Espccially it is a grcup if and only if R.=S as well as L,=S

for every x € S.
Theorem 15. If the algebra S has an idempotent a and every L.(or R.)is either E

or Z, for every x €S, then S is a semi-group.

Proof of Theorem 15. We see that R,=Z,. Let us consider two cases:
(D Le=E, (2) Li=Z..

(1) When L,=F, it follows that L,=F for every xeS. This is out of the
question (8).

(2). When L,=Z,, we see that R.(a¢)=a for all xeS and R.~L. for every
x€S. Hence S is a semi-group by Theorem 1.

In the next two paragraphs, we shall determine all types of semigroups, up

to isomorphism, defined in {a, b} and in {a, b, c}.

§ 4. Semi-groups of Order 2.

We can see easily that the following 5 operations A;~1, ‘and x defined in

{a, b} are all semi-groups.®

7) See (7).

8) We denote, for example;-the table by |@ II;’
a

|a
a)ab
blab



@ b
a b

A A2 A3 A 7

In fact, 4, A and ¢ are semi-groups by Theorem 15, 42 by (3) of the Corol-
lary, 43 by Theorem 14.
It can be proved, furthermore, that semi-groups of order 2 are nothing but
these 5 types up to isomorphism. In order to prove this it is sufficient to dis-
cuss the following 3 types among all algebras which are possible to be given
in {a, b}.
ab ab aa
b b aa ba
V1 V2 Vs

Though y; is isomorphic to As;, v» is not a semi-group, neither ys, because R,==L,.

Let us now study the ordering in the universal semi-group system. By The-
orem 2, we see A ? A3; and A, ;}?i A2, At ?: s dually A4 ;Sb Az, )\4§<f> As.

The diagram of the universal semi-group system of order 2 is as follows:

where 4, is a right groupoid, A, a left groupoid, 43 a group, 4 a semilattice.

§ 5. Semi-groups of order 3.

1. Nown-universal Semi-groups.

Without loss of generality, it may be assumed that ¢ does not belong to the
value range® of S={a, b, ¢}, and {a, b} is .a sub-semi-group of S; and so all
the types of semi-groups {a, b} are as follows up to isomorphism or anti- isomo-

rphism.
aa ab aa ab
aa ab ab ba
@ @ @ @

Now, we shall discuss (1)~(4) successively.

9) By the value rarge A* of the subset A we mean the set composed of elements z=xy for

%y e A
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(1) ac=ca=a follows from R,~L,, L.~R,; bc=cb=a irom R,~
(Theorem 1).

Lc > Lb”*’

we have |

[SERNEEN
INERSERNY
SIS

QR
QK
(S RNERNY

m :
(2) From Theorem 1 and 4, at once ca=a, cb=>b; and we get

w

O
[SERNERN

INERSERN

M3
with which another is isomorphic.
The above u, u2 and us prove to be semi-groups directly from Theorem 1.
(3) (4) By Theorem 11 and 12, we have

aaa laaa "aba [adbd
aba abbd cbabd baa
aaa a b b | 'a b a baa
Ha He M1
Moreover, adding

aaa

bbb

aaa

Us

which is anti-isomorphic with u; we have obtained all non-universal semi-groups
M1~ 8.
2 Universal Semi-groups.

Without loss of generality, R, and L, may be assumed only as follows:

(1
(2
(3
(4)
(5)
(6)
7
(8)
(9>
105

Because it is necessary that Ru,~L,; and the others are isomorphic or anti-
isomorphic with one of the above by the mapping <clz é 2) Now, we denote by

(b, ] the value range of the subset {b, ¢}. Successively thé cases (1)~10) will

;a
10) By (a, b, @), for example, we mean the mapping Hz

Lo=(a, b, ¢),
L.=(a, b, ¢),
Lo=(a, b, ¢),.
L.=(a, b, ¢),
Lo=(a, a, @),
L.=(a, a, a),
L,=(a, b, o),
Ly=C(a, b, b),
L,=(a, a, a),
L,=(a, b, a),

Ra:(a; b; C), 10

Ra:(ar
Ra:<a,

b, ),
b, a),

R.=(a, a, a),
R.=(a, b, b),
Ro=(a, b, a),
Ry=(a, b, @),
R.=C(a, b, b),
R.=(a, a, a),
R.=(a, a, ¢).

abc

S
Qo

)-
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be discussed.
(1) When a2 € (b, c), we have irom (1) of Corollary and Theorem 10

abc abc abc abc ‘abc‘
bbb bbc‘ ‘bbb bbc bbb
lcbd cbc! ’cbc ccb ccc
A A2 A3 A4 As
When a € (b, ¢), we can suppose chb=a or cc=a, to which others are mapped.
If ¢chb=a, then by Theorem 3, we get (group) 2 b ¢
bca
lcab
Ao
If cc=a, we see that cb=bc=5b by Theorem 3, and bb=b irom R.~L;, (Theorem 1).
ab c|
bbb
cba
A

(2) By Theorem 1 and 3, a € (b, ¢); considering (4) of Theerem 4 and R, c

R, we have

|

o O
[ R

SO
[SEESENY

@v::\

SO

|

As Ao

(3) By (4) of Theorem 4, L.=(a, b, ¢c); we get bc=b irom R,~L, and bb=>
from R,~L,, R,cR,.

S Re RS
(SRR Y

ISTRS RN

Aig
(4) See the proof of Theorem 15

QK|
SN
SYESTY

A

(5) & (6) By (3) of Theorem 4, it holds L,=(d, b, b); and so either b or ¢
is a right-unit. Hence we have semi-groups each of which is isomorphic with
one belonging to (1)~(4).

(7) From Theorem 3 follows that neither R, nor L, contains c¢; hence cc=c.
On the other hand, be R, be L., that is, bc=cb=05b showing that ¢ is a unit.
Therefore this case is reduced to the previous one.

(8) Similarly cc=c. From this it concludes that bc=cb =0, because we require

R.~L., R.~L, If bb=a, then R.=L,. Hence bb=5b; we have

SRS RN
(RS RS
o ov o
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(9) Let us investigate the case that a semi-group has no idempotent but «
and the value range (b, &) contains a. For,if a € (b, ¢}, then we have from (2)

of Corollary and Theorem 10

aaa aaa aaa aaal
abc abb abc abb|
abc abc acb lacc
1o s A A3

whereas Ao is isomorphic with A5, 4s with s, A7 with ir; and 415 is anti-isomor-
phic with .

If one at least of b and ¢ is idempotent, then the semi-group is isomorphic with
one of (1)~(8). Now we take up only the following cases, which are all out of

our consideration.

a a
a b b

i) ii) iii)

a a a a
a a 4

ST
QAR
QK

i) The element ¢b must be either b or ¢, but whatever ¢b is, Ry=L,.
ii) Either ¢ or bz must be ¢. Then Ry=-L, or Li=:R,.
iii) By the assumption, cb=a or bz=a. However it follows that RyL. or
LyA=R,.
10) It follows from L.,~R, that ¢b=5b, contradicting to R,~L,. Hence there
is none with L,=(a, b, @), R,=(a, a, ¢).
In addition to Ai~2a13, we have the remaining ones which are anti-isomorphic

with the former.

aaa abbd abbd
bbb bbb bbb
lc cc cbbd cccl
114 }.15 116

We can easily see that i1~ thus obtained are semi-groups which are not iso-
morphic each other.

8 The Ordering of the Universal Semi-group System

At first we define a term as following. If the system N of universal semi-
group operations defined in a set S satisfies the conditions (1) and (2) as fol-
lows, %t is called the normal represent system of universal semi-groups with
respéct to S.

(1) For any A, pe® (A=u), one is not isomorphic with the other.

(2) For any 2e%, N contains v which is identically anti-isomorphic with 4,

5 ¢ 8 . .
that is, y=1" (10) where ¢ is an identical translation on S.
For example, we have as the normal represent system of universal semi-

groups:
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aaa

aac a‘ aac| laaal [abc |aaa| laaa
aabl |abc bb abce| |labec bca abce| |laaa
abr) arc! c} cca ccc ]cab ‘acb abce
Az Ae A As As Ar As
abb| |aaa| [abc| [aaa| [aaa| |aaa| [aaa) [aaa
abb| |abc| |abc| \aba| |abb| bbD aab| bbb
abc| |labe abc aac acc| lccec aac| |bbc
29 110 }-11 /312 223 214 115 116‘

where these A; are isomorphic with the previously written 4,
The diagram of the system is obtained by Theorem 2 or (9).

abc
abc
abe

111

As easily seen, this system forms a lattice, but the lattice depends on the repre-

sent system.
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In these notes, we shall first state of the necessary and sufficient conditions
that a function should be homogeneous polynomials of degree n, in § 1. In § 2,
we shall investigate whether some of the theorems of Schwarz on regular func-
tions of complex variables will be able to be extended to the case of functions
whose domain and range both lie in complex-Banach-spaces or not. Finally, in
§ 3, we shall investigate the state of the boundary of the domain G(hyg).

§ 1. Homogeneous polynomials.

Let E and E' be two complex-Banach-spaces.
Definition 1. An E’-valued function x' =p(x) defined on E is called a homogeneous
polynomial of degree n, if the jfollowing conditions arve satisfied: (1) p'x) is strongly

continuous at each point of E, (2) for each x and y in E, and for any complex numb:r

n

a, plx+ay) can bz expressed as p(x+ay):k23pk(x, »a®, where Pi(x,y) are arbitrary E'-

valued functions of two variables x and y, (3) Pu(x, y)x0 for some x and y, (4) plax)=
a'p(x).

Definition 2.%0 An E'-valued function x' = f(x) defined on a domain D of E is called
analytic, if it is strongly comtinuous and G-iifferentiable on D.

Theorem 1. The necéssary and sufficient conditions that p(x) chould be a homogeneous
polynomial of degree n ave that it is analytic on E and satisfies plax)=a™p(x).

Proof. If p(x) is a homogeneous polynomial of degree n, it satisfies plax)=
ap(x) by (4) and is strongly continuous by (1). The condition (2) shows that
p(x) is G-differentiable at any point in E. Thus we see that the conditions are
necessary. Conversely, let p(x) be analytic at any point of E and satisfies p(ax)
=a"p(x). Then we have

¢ 2 T i meb Emﬂ

=1 P(x+¢& 1 o Plx+
Plx+ay)= 27rif Cg_aJO dé&= 0( 5P §y)a7n>dg

— i I 'ﬁ P(x+‘§y>amd5

m=027fl $m+1
oy 1 P(x+Ey) 72\ m
= 3 (g [ S R ag)am

where C is a circle of radius r and r > .
While, p(ax)=a"p(x), we have

1 Plx+Ey) d& = 1 P{(1/&)x +y) de

27t Je E”Hil 7 27wt Je Em+i-n
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1 1 1 m-—
Put »Ef:ﬁy then df:—?d‘g and ?’ﬁm:” n+1
Therefore, we have
1 Plx+£3) 1 5
_247-”_ ci &—E‘,ﬁ-lfy— df :——»2;”—. o P(vr +y>77nb—7 1 d77 )

Since the left side integral is taken counterclockwise along the circle [&]=7,

the right side integral is taken clockwise along the circle |7 | :%, Integrating

counterclockwise along the circle |7 :%, we have

1 Px+&y) _ 1 4 m—n-~1
Tar ot 48 =gy [P atd T d
. . 1
Since p(yx+y) is regular on |y| £ >

1 7 m—-n-1 —_ 7 H @ 217 — 7
BT ﬁ/P(gx-{—y)v dyp=P(y), when m=n,
=0, for m>n+1,
1 P(x+¢&y) _
Put o2ni Je E?n[+1 dE _Pm<x y> ’
then we have Plx+tay)= an P(x,y)a™ .
m=0

Since pu(%, ¥)=py), pu(x, y)F£0. This completes the proof.
Corollary. Thz necessary and sufficicnt condition that u(x) should bz linear is that
wx) is analytic on E and satisfies plax)=au(x).
§ 2. Extens’on of the Schwarz’s theorem.

The purpose of this chapter is to extend the Schwarz’s theorem of complex
variables to the case of complex-Banach-spaces. The theorem of Schwarz is
described as follows: If f(z) is regular in the circle [z]| <R and satisfies f(0)=0

M

and |f(z)! <M in the circle |z| <R, then Jf(z)[éﬁlzl. If the equality is establ-

ished at a point of |z| <R, then f(z)Elge“’z,

This theorem is not always true in our cases.

Theorem 2. Lot an E'-valuzd function f(x) defined in the sphae|x| <R be analytic
and satisfies f(0)=0 and |Ax)|£M in thz sbhere |x|<R. Then Hf(x)_l[é%![x][

Proof. Since f(x) is analytic in the sphere I[x||<R and f(0)=0, we have
f<x>:nz=1h"<x)’ .......................................... (1)

for an arbitrary x in [x[|<R, where h,(x) is a homogencous polynomial of degree
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n. Now, we fix x in [x]|<R. From (1), we have

flax) = nzjl h(x) a”,

f(ax) is analytic about «, when ]ai<% , where clearly —”—5”—>1. Since f(ax)
H

is an analytic function of «, f(ﬁé%): ihu(x)au—l is also analytic in the Tcircle
n=1

\ R . .. . . R

le] <”—X”—_ Let r be an arbitrary positive number which satisfies r<—“-X-”—,

then J!Lgi)\lélf, when |a|=r, because [f(ax)|<M and |a|=r. Since Hi%ix@)l! is

subharmonic as to a, H-fﬁzi)![ takes its maximum on lal=r. Thus we see that

Il —f%}illé%/f, for |a|<Lr. Since r is an arbitrary positive number satisfying
f M R M
r <o we have 1122y o M /R R,
for [al<% 1), Put a=1, and we have
”f(x)”é_%”xu. .......................................... (2)

Since x is an arbitrary point in [x[|<R, (2) is held for [x[[<R. This completes
the proof.
In concluding this paragraph, we shall aford an example f(x) which satisfies
following conditions
1) £(0)=0,
(2) f(x) is analytic on |x|<1,
3) f®))N<M on [x]<1,
4) )] =M]|x| for some points in |x|<1,
and yet [f(x)IZ=M|x]

X112 %12\
Let X:( ) be a matrix of (2, 2)type of complex numbers, and [|X| =
X2z Xz

Max{|%s|, |%:2], |%2z], |#22]). Then the set of such X is clearly complex-Banach-
abd

d>X where ®>a>b>c>d>0, and M=a-+b. Then
¢ d '

ab X11X12 X1+ DXer Gx2+ b %22
#(X)= =
cd X21X22 CX11+ dX21 CXpot d %22/ .

spaces. Put ,u(X):(

Clearly #(X) is a linear function and we see that #(0)=0 and x(X)is an analytic

function on whole spaces by Corollary of Theorem 1. Since Sup [u(X)|=a+b
Nxn=1

A o\ )
=M, we have ||u(X)| <M, when | X||<1. Put X1:< )and X2:< ) where 0<2<1.
A2 o A/,
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Then || X:=21 and |X:|=2. Since
al+bi bl

) (XD =4a+b)=M-| X,
cA+dar di/,

n(X)= =<

al bl
While /,£<X2>=
vcA d2

[p (XD =2a<<a(a+b)=|X.[-M .

> and we see that

§ 3. On the boundary of G(hn)*®,
Definition 8. G(hy) is the interior of the vegion of convergence of a power series
) 556 hw ().
Definition 4. Let x bz an arbitrary point on ||x)=1. R(x) is the upperbound of |a],
for whichn 20‘ ho{ax) is convargent and analytic at ax.
Theorem 3. If la|=R(x), ax is the bouncary point of Glhy).

Proof. Since 3! hu(x) is analytic in G(ha}*®, 3 hu(x) is analytic at cx while
0 n=0

n=

ax lies in G(hy)**®, where ||x[|=1. But E h.(ax) is not analytic when ax lies
n=0

beyond G(hu), because 3! hy(x) does not always converge in any neighbourhood
n=0

of awx. This proves that ax is a boundary point of G(hn).
Theorem 4. Rx) is lower semi-continuous on |x|= 1.
Proof, If R(x) is not lower semi-continuous at a point x, on [|x]|=1, there
exists a sequence {x;} such that x; tends to x, and satisfies
R(x;) < R(x,)—e (7=1,2,3,....),
for a suitable positive number €. While, if |a|=R(x;), there exists at least a

point & on |a|=R(x;) such that «;x; is a singular point of 3 /. (x). Since
n=0

lai| = R(x;)<R(%)—e¢, {a;} has at least a limiting point «, Then we have a
subsequence {ay} of {ci;} which converges to «,. Thus we see that a4, converges
to aoxe. Since %o is a limiting point of singular points ai%, ayx, is also a

singular point of Z“i hn(x). Since |a: | <R(Xo)—¢€ , |ao] <R(Xo)—e.
n=0 -
This contradicts that 5) ha(x) is analytic at ax, , when |a]<R(x).
n=0
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#%¥) See Theorem 4. 7. 1 (HILLE, Functional analysis and semigroup, page 83). If G(hn) is
non-void, then G(hn) is a c-convex c-star about (. That is, if XeG(hn), then aXeG(hn),
where |a | < 1.



Ueber die Verschiebung der Nullstellen einiger Funktionen,
welche aus Integration gebrochener Ordnung hervorgeht.

Yoshikatsu WATANABE.

Mathemaiische Institul, Gakugei Fakultat, Tokushima Univeysiial.

(Eingegangen am 30. September, 1952.)
Es sei f(z) eine analytische Funktion der komplexen Variablen z und « reell
positiv. Man hat das Riemann-Liouvillesche Integral

Jf@ = : gz_;é%)f):i fadu,

das fur gebrochenes o allgemein mehrdeutig ist:. Betrachten wir nun

g =2 JOf D) = Hof (2,

so erhalten wir eine analytische Funktion, deren Existenzgebiet eben mit dem-
selben von f(z) lUbereinstimmt. Gestattet nidmlich f(z) eine Taylorsche Entwick-

lung um z=0
f(z) ;‘ Ch - n/l—'(il"i‘l)

so lautet

g@= )f‘.oo a2/ M(n+a+l) .
n=

Dafir aber gilt

imy/ (e /T (n+1) = im¥V e,/ (nta+l) ,

N—ro0 N—>oco
und folglich besitzen beide Reihen dieselben Konvergenz- bezw. Fortsetzbarkeit-
Eigenschaften. Inzwischen veranliBt unsere Verfahren gewiBermafen eine
Veridnderung der Nullstellen-Verteilung. Ist beispielsweise f(z)=¢% so ergibt
sich

1 ( z 2 }
g(z HY* — _ 41 R S
@)= F r(n+a+1) I'a+1) L a+1+(a+l)(a'+2)+ .
Diese Funktion wird zwar wieder gané transcendental, aber doch verschwindet
in gewilen Punkten der Halbebene Rz=za—1, je nachdem >1 oder 1>q>0 ist,
wie ich unten elementarweise zeigen werde(*).

§ 1. Eine gerade Rechnung liefert sofort

X o7 i o 1 (Z C)w o . 2" o ~
He=gJe =0 TGy ¢4¢= % Torasny @>0. (1

Ms

(1) Man vergleiche flir etwas ausgearbeiteten Baweis, Polya und Szegd, Aufgaben und Lehr-
sidtze avs der Analysis, Bd. II S. 70, S. 250.
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Ins besondere gilt fir a=1

1
He = (@-D),
was in den auf der imaginiren Achse liegenden Punkten z=2xun/ verschwindet,

wo n ganz =0 ist. Auch fiir jedes reelle x ist im allgemeinen

e o [
H*¢ ~f0 W@’dt>0,

so daB auf der reellen Achse es keine Nullstelle gibt. Anderseits, falls z,=7,
exp 70, eine Nullstelle ist, so muB z,=7, exp (—i8,) auch dieselbe sein. Deshalb
darf ich unten mich nur auf den Fall beschriunken, worin 0<f8(=arg z)<m, d.h.
der imaginire Teil y>0 ist.

Setzt man nun in (1) z=7¢%, ¢=pef (§ fest), so erhilt man

.1 [T (r—pt
H?* ¢ =3, T

oder, indem man nochmals psing =%, rsinf =y, cotf =c¢ einfiihrt,

exp {p(cos@ +7sinf)}do,

v . a—1
Hwezz&lw fo (yl’(?z)) e (cosmp +isiny)dy

“U+iV =W, (2)

Die hier in dem Integranden auftretende Funktion (y—7)%-le7=Y ist non-negativ

im Intervalle 0<<»<y, und erlaubt fiir festes y

Yy Wt Ra—O—(a—D |, wo

Rz—0) I =

6 7 R l

Hieraus flieRBt die Folgerung, daB fira>1 bei Rz<a—1, g{; <0 gilt und Y(=0)

oY

nimmt stets ab, wenn » zunimmt, wihrend fir 0<a<1 bei Re>a—1, 22 >0 und

0
Y(>0) monoton zunimmt.

§ 2. Falls zuerst a>1, Rz=x<a—1, so daB ¥ monoton fallend ist, schreibe
ich

S o g — L ) o i 1 Y v i
V=3 f 7 smvdv;:ym[,(a) fo Ysinypdy
7: v .
:fo -I—f 05a000 + fm mit y=(p+eln, 0Ke< 1

»—1 »
:1;1_112_{_.........._*_(_]) 1)1)_}_(_1) 1)/1)+1’
WO U022+ » > 0,0y 1120 sind. Daher gelten, sowohl fiir p=24—1 als p=24
Y
fo :(171—?)2)'*-(03—*”4)“]‘ """ +<‘U2q_1“1)/zq> >0

=Ws—v2) + (Us—v) 4 oreeer + (Wege1—T2q) + 02041 > 0.
In diesem Falle ist also in der Linke der Gerade x=a—1(<0) durchaus JH»e*>0,
somit ¢s dort keine Nullstelle gibt. Aber bei a=1 zwar verschwindet W=U(x,
¥ ) +iVix, y, a) im Punkt P(x=0, y=2nxr, n=x0), wihrend in demselben Punkte
die Determinante
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oU oU oU 14 ; 5 .

p—{oe o |- 0x ~ax (5 + (%)

ov 8v | | oV U

0x oy . 0x Ox
den positiven Wert 1/4#*z* annimmt. Es leuchtet hieraus wegen eines wohlbe-
kannten Satzes ein, daB durch jeden Punkt P(0, 2nrz) in der z-Ebene je eine Kurve
Ulx,y, «)=0, V(x, 9, a=0 existiert, und daB fir a<1 alle diese in der Rechte der
Gerade x=«a—1 liegen sollen.

§ 3. Um den Falle 1>a>0 zu behandeln, schicke ich folgende triviale Lemata
voraus :

Lemma 1. Mit der konstanten Summe 2¢ zweier positiver Zahlen ¢ und b
wird das Produkt @b maximal bei a=b=c. Das Produkt ist je gréBer mit je
kleiner Differenz; d.h. wenn a,+b:=a,+b.=2c und |a,—b;| < |a.—b.| sind, so besteht
a:b:>asb.. Dies ist klar, wegen der Identitdt ab=1((a+b)%—(a—b)*)=c"—1(a—b)*.

Lemma 2. Sind ay, b, a., b, alle positiv und ab,>a.b. sowie |a,—b:|> |a.—b:|, so
folgt (a;+b,%>(a;+b.)? und deshalb auch a;+b,>a.+b..

Da nun fur 1>a>0, x>«—1, die Funktion ¥ monoton wichst, gilt folgendes:

VHee - — L1 7
U=RH*¢ = Sapees [\ Yeosydn
z 21 pr 4 5
:fo +f,, — _|_f( +‘/‘M mit y=(p+e)r, 0<e <1

p=-D=

= Pyt Vg — e +<—1>1’vp+<__1>1)+1 ‘U/p+1 ,
wo offenbar v;, vs,++-+,0,>0 und v74,=0 sind. Uberdies ist die Folge vi vz-eeo
sogar monoton wachsend. Zum Beweis dafiir setzt man zuerst

p=hn+t (0<t<2rn), y—hn=1(>27x und 1—a=p>0,
dann ergibt sich
fh(:+2) ﬂ'@éﬂ)T e cosydy =(=1)"e™" ‘/;M (t——l-r)ﬁ— e costdr.
Das letztere Integral kann beschrieben werden wie folgt:

f /2 i‘ e ecm—m) e° (Z+7) ¢ Cr—7) \‘
o W(t—1)f ~({—mn+1)f T (d—n—1)" T (t—2m +c)f [0St dr

:fom Y,—-Y2:—Y:+Y,)costdr,

Nennt man a;=f—rt, by=f{—2n+7 und @o=¢f{—n+7, b=ft—n—7, so ergeben sich a;+5;
=@, +b,=2{—-27(>0) und a,—b,=2r—21, a.—b.=27r, wo 0<2r<n ist, daraus a,—b;
>a,—b, folgt. Deswegen erhilt man unter Anwendung von Lemma 1
abi<al,, dh. (—0)(—-2r+7) < ({—rw+)(E—r—1),
und weiter
o7 gt @n—1> (=1 gtlmt )

(T—c)P(f—2n+c P ~ (i—n+tc)f(f-m—c)f"’

Anderseits ist ¥ monoton zunjhmend, somit Y,<Y, und Y:<Y% mithin wird Y,—Y;

>Y;—Y,. Daher nach Lemma 2 gilt

dh. Y.Y.>Y.,Y,
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n+2

Y. +Y.>Y.+Y; und folglich sg =(=1".

¢
e
Sonach hat man (—vs-1+02) >0, (V2q—V20+:)<0 und schlieBlich vy ;<02 <V2y+z. Also
ist die Folge {v:} monoton wachsend, wie oben erwidhnt. Daraus aber ergeben

sich fir y=2g+¢)Hn, 0<e'<1/2
v
fo =W —vs)+(Ws—v5) +oeere + (Voq—V20-1) +V'2q1e > 0,

und fir y=2g+1+e)m, 0’ <1/2

v
fo = —1)1—'<L'3—1)2>— """ "(Uzq+1—vzq>_v 2tz < 0 .

Also verschwindet U(y) nur auf dem zweiten und vierten Quadranten des Argu-
menten y (Modulo 2x).

Kénnten wir erweisen, daB V(y) auf dem oben genannten Quadranten kei-
neswegs varschwindet, so wiirde es bewiesen werden, daR W=U+ 7 V=0 in dem
Gebiet 1>a>0, x>a—1 ist. Zwar in diesem Gebiet kann man nach der vorigen
Weise sehen, daB bezw. V=—, 4+, + wird, je nachdem y=2gn, (279+1)n oder
(29+1/2)= ist. Da aber das Zeichen von V fiir y=2q+3/2)r doch unklar ist, so,
um den Beweis zu ergidnzen, muB ich mich mit etwas anderen Methode behelfen.

Obgleich W eine analytische Funktion von

z2=x+yi=7{cos 0+ 7 sin ) =y(c+7), c=cot @
ist, vermag sie doch als diejenige von y allein gedacht werden, falls § als fest
betrachtet wird. Da wir schon den Falle §=#n (y=0) ausschlossen haben, so ist
W(2)=W(y,0) zwar reguldr in bezug auf y. Folglich kann der Ausdruck (2)

umformt werden zur neuen Gestalt:

- 1 (1—¢)et . . .
W=U+:{V= Wexp {(c+idyt}rdt, (a>0)

0

worin c=cotf (=) bloB als Parameter auftritt, und unabhingig von y ist.

Wir gewinnen deshalb

. 1
‘%’V:Iia) Ct(—t)* T exp {(c + iyt dt,

was durch partielle Integration

aw .« 1
@i @ (3

liefert, und nochmalige Differentiation erteilt

aw T . a\t o« . 1+ 1
TyZ:L<C+Z—?> +y2jW+(C+Z— p )}I—”((x—) <4>

Angenommen, nun es geschieht, daf

W=U+ V=0, (5)

dann miBen vermége (3) und (4) gelten
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aw dU  .dV 1

dy =dy TVdy T 3T (@
d*w U .2tV [ 1+a) 1 7
T = ay iy =5 iy @ -
Damit lauten fiir imagindre Teile

av dxv 1 )
V=0 ay= o esT @ T

und daher muB dort ein Extremum vorhanden sein. Aber bei positivem «=1

hat dies keineswegs geschehen, wie wir schon oben so ausfiihrlich gesehen ha-
ben. Lemnach ist die Annahme (5) zwar unmoglich, was eben zu beweisen ist.

Infolgedessen kann man dartun auf dhnlicher Weise, wie in der Ende des
Abschnittes 2, daf der Kurvenzug

Hee=U(x,y, ) +i V(x,y,x)=0

fir den parametrige Wert 0<a<1 durchaus in der Linke der Gerade s=a—1
liegen soll. AuBerdem vermute ich, daB diese Kurven vielleicht von der Gerade
r=q—1 asymptotisch im Unendlichen beriihrt werden.

§ 4. Bekanntlich verschwindet keine von beiden Funktionen cos z, sin z bis
auf reelle Achse, was auch bei etwaiges o> fiir Funktionen

H* cos 2:2m (=D I'Cn+a+l),
0

sowie
H* sin 2:2: (=1# 1t 22 Yr(2n+a)

ebenso gut gilt. In der Tat haben beide reelle Funktionen

cos, 1 [*(x—=§)*"" cos
H* Gn*=% Jo I (o) sin ¢ 4§

fir 2>a=0 bezw. fir 1>a=0 je zwei Nullstellen zwischen 2xn und 2(z+Dr
(jedoch fiir a>>2 bezw. a>1 gibt es keine Nullstell auBer £=0), wie man leicht
nach den oben benutzten Methode zeigen kann. Also durch H*Verfahren bewegen
sich die Nullstellen dieser Funktionen auf reeller Achse hin und wieder.

Zum Beispiele verschwindet die Funktion

sin z

H' cosz= =(sinx coshy+7 cosx sinhy)/(x+iy)

fir x=nn{n=x0) y=0. Da aber die dortige Dzterminants

p=|%% 5 |= (BT 4 ()~ ks o
oV oV
0x 0y
ist, so muB je eine Kurve in der zEbene
U, y, a)=0, Vi, y, a)=0

durch den Punkt (x=#nx, v=0, a=1) existieren. Alle diese Punkt= liegen durchaus
auf reeller Achse. Unsere Verfahren H¢ bestimmt also eine homeomorphische
Abbildung der Nullstellen von cosz auf diejenigen von H”* cosz in der rellen
Achse.



Note on Inverses in Rings.
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Let R be an arbitrary ring. Two idempotent elements ¢ and f are called
isomorphic in R if there exist two elements ¢ and b such that ab=e and ba=f.
We write then ex~f. Clearly, by this definition, the set of all idempotent elements
in R are divided into classes of idempotent elements. By (1P, we may assume
in the above definition that a € eRf and b ¢ fRe.

Lemma 1. If an idempotent element e is isomorphic to zero, then e=0.

Lemma 2. [If fwo idembotent elements e and f ave isomovphic and if ¢ is a sum of
two orthogonal idempotent elements ey and es, then f=fi+ fo, where fi and fo ave arihogonal
idembpotent elements such that fi=e, and fi~e,.

Proof. From e=ab and f=ba, we have be=fb and so bea—fba=f. Hence f-=bea
=baa+beza. We see easily that be;a and be:q are orthogonal idempotent elements
such that bzia=2e; and be.a=c..

Lemma 3. (Azumaya (1)). Two idembotent elements e and f are isomorthic if
and only if the left ideals Re and Rf arc R-isomorphic: Re=Rf.

Lemma 4. If the left ideals Re and Rf arve R-isomorfhic, then the subrings eRe and
TR are isomorphic.

Proof. From e==ab and f=ba (a € eRf, b ¢ fRe), we see that ¢Re and fRf are
isomorphic under the mapping x—>bxa (x € eRe).

In the following we assume that R contains an identity 1. Generally, ab=1
in K does not imply ba==1.

Lemma 5. The following conditions are equivalent:

(1) ab=l in R implies always ba==1.

(i) If e=1, then e=1.

(ii1) For any idempotent clement ex1, R and Re ave not R-isomorphic.

Proof. Suppose that R contains a pair of elements g, b such that a@b=1 but
bax1. Then ba is an idempotent element and ba=1.

Theorem 1. If R is a ring with an identity that contains two elements a and b such
that ab=1, ba=x1, then

(1) R contains an infinite numbzr of idémpotcnt elemeonts e; such that e;~=1.

(i1) R contains an infinite numb:r of sudvings R; such that the R; are isomorphic to R.

(iii) R contains a left ideal thut is a divect sum of an infinite number of R-isomor-
phic lefi ideals (2).

(iv) There exists an infinite properly descending chain of principal left ideals generated
by idempotent elements :

1) Numbers in brackets refer to the references at the end of the paper.
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R=Recy 2 Re;y D Rezg = eovveens (e0=1)
such that the factor spaces RefReii (1=0,1,2,----+) are R-isomorphic.

Proof. Since ba is an idempotent element, we have 1=(1—ba)+b1, where 1—ba
and bz are orthogonal idempotent elements. Then we have by Lemma 2 ba=(ba
—ba®)+b*a®, where ba—b%a* and b%a® are orthogonal idempotent elements and so

1=(1-bda)+(ba—b*a®)+b*a* ,

where
1—ba=ba—b%a?, 1=ba=~pba".
Continuing in this way, we have for any positive integer
7
1= 30" 1a* 1 —b'a?) + ba® (@*=0"=1),
i=1
where
]_;bagb’zazg ......... gbnan ,
1—-ba=ba—b*a?==--------. =pr1gvt _pa” .

Since 1—ba=x0, we see from Lemma 1 that 5 'a’"'—b'a’*0 and so ba'==bla? (i=j).
Hence there exists an infinite number of idempotent elements b'e’ such that bai==1.
If we set b'a'=e¢;, then

RO Re,DesRenD v ovvene
and by Lemma 4

R=¢Re, (7=1,2,3,--ece00- )-
Further if we set d'-ai-1—b'a’=f; , then the left ideal [:Zi]Rfi is a direct sum of

R-isomorphic left ideals Rf;. Finally
R=ReyDRe;DResD - ooevevo
is an infinite properly descending chain of left ideals such that Re;/Re;.1=Rf.
For example, let R be a (complefe) direct sum of an infinite number of
simple algebras. Then, by Theorem 1 (iv), we see that ab=1 in R always implies
ba=1.
Theorem 2. Let R bz a ring with an identity. Suppose that R splils into a divect
sum of an infinite number of left ideals:
e e e o e Soconanoo
If R contains an infinite number of R-isomorphic left ideals (i, then there exists a pair
of elements a, b in R such that ab=1 but ba=1.
Proof. We see easily that every [; is a left ideal generated by an idempotent
element: ;=Re; . Let us assume
Rey=Rej,=Repy=--e+ee o
We may assume without loss of generality that e;=e; . Let Rey_, be R-isomor-
phic to Rei under the mapping ai_,——>a's . Then the mapping

a= Zlaz——>a*= naf (a:, af € Re),
=

i=2

where af =a; if 7%, (k=1, 2,--.-.. ) and @i, =ai, (k=2, 3, ), gives the R-isomor-

phism between R and R(1—e). Hence, by Lemma 5, R contains a pair of elements
a , b such that ab=1 but ba=xl.
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We denote by 7(@) ((a)) the right (left) annihilator of an element a.

Lemma 6. If ab=1, then l(@)=0 and r(a)=r(ba)=(1—ba)R.

Lemma 7. If an element a of a ving with an identity has a uniquz vight inverse b,
then b is the inverse of a.

Proof. Since a(b+1—bz)=1, we have 1—-bz=0.

Theorem 3 (Jacobson (2)). If R contains two elements a and b such that ab=1 but
bax1, then the element a has an infinite number of right inverses.

Proof. Since l(a)=0, we have ¢'=0 (z=1, 2,-+--- ) and so (1—ba)a’=0. Moreover
we have 1—ba==(1—ba)a® because ((1—ba)a’)*=0. Hence

(1—-ba)alx(1—ba)a’ @ =7

If we set b;=b+(1—ba)a’ , then ab;i=1 (=0, 1, 2, ».

If b and b are two distinct right inverses of «, then, by Lemma 6, baxba.
But we have

Rba=Ra=Rba .
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The set M in the separable real Banach space £ (1) is said to be locally
convex if every point x of the closure a7 is a convex point, that is, there is a
positive number ¢ such that U.(x)nM?", if non-null, is convex for any positive
e<d. We have proved already in (2) that if M is locally convex and arcweise
connected, its interior M* is cnvex.

In this note we shall introduce the concept of homogeneity into local convex
sets to lay more somewhat firmly the foundation of our theory and then shall
give the proof of main theorem by discussing the case where M is closed under

the weaker condition and some assumption.

1. Preliminaries.

We denote by S(M) the subspace® spanned by M i.e. the minimal subspace
of 2 which contains M. If SULx)nM) =S U(y)nM)for every different x, yeif and
every positive numbers ¢, ¢/, then M is said to be homogeneous. This definition
is equivalent to the equality that S(U:(x)nM)=S(M) for every x ¢ M and every ¢ >0.

Lemma 1. If M is convex, them M is homogeneous.

Proof. Let Usa) be a neighbourhood of a point ae i .

Suppose S(Ug(a)nM)EFS(M), then there is a point be S(IM)—SU(a)nM). It can be

easily seen that f{A)=1—A)a+ 15, o</I<TE_£5[T, belongs to SM)—SUs(a)nM).

This contradicts to the definition of S(U:la)nM).

More precisely,

Lemma 2. If M is connected and locally convex, then M is homogencous.

Proof. Suppose that the theorem is not true. Let Usa) be a neighbourhood
of a point ae i7. We denote by X the set of points x belonging to 7 which
satisfy S(Usx)nM)=SULa)nM) for every 6 and fixed e. Let Y=m—X. Then
X=0, and Y=0. Since M is connected, a7 is also so, that is, X'nY=0» or
XnY %0, where we take up X'nY=0 (similarly in the other case). Let beX'nY.
We can choose-a neighbourhood Vib) which contains x€X and whose ‘intersection
with M is convex. By Lemma 1, V\b)nM is homogene=ous, that is, S(Us(x)nM)=
S(U(b)nM); accordingly we have S(U,(a)nM)=SUb)nM) for any 3, ¢>0, contra-
dicting to the assumption that #¢Y. Lemma 2 has thus been proved.

1) Uelx)=E(z; |lz—2 |[<e.
2) Here the subspace means the linear subspace.
3) X' is the derived set of X.
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By a relative interior (exterior) point of M, hereafter, we mean the interior
(exterior) point® of M in the subspace S(M). The set of all relative interior
(exterior) points of M is denoted by M?* (M) which is called the relative interior
(exterior) of M.

Now we suppose that convex sets always contain relative interior points (3).
Then we have readily

Lemma 3. If M is connected and locally convex, then it holds that ar= M.

Proof. Clearly poami. We now show afciari. Taking any zed; Ufx)nM is
convex for some ¢>0. By the presupposition and Lemma 2, there are x.eU:(x)nM
and >0 such that

SN Us(xo)=SU:'x)n M)n Us'xo) cU(x)n M M.

Hence we have Mc=ife.

Further we arrange three lemmas (4).

Lemma 4. L2t a, be 2 and c=(I—2)a+b. Given a neighbourhood Ulc), we can find
V{b) such that Ca, x)nU(c)x0? for any xeV(b).

—>
Lemma 5. L2t M bz a convex set, and M* {ts bounday. If ae M, re M*, then(a, vy M?

whzre (a, ?):fz; z=(I—Na+ir, A>13

Lemmn 6. Lt b b2 a convex point of M and let Ca, by)cM'. Then theve is a suita-
ble neghbsurhizod Ub) of b such that Ca, x)cM! for every xeUb)n M.

Lemma 7. If M is connected and locally convex, then (31) =M.

Proof. We can show easily that any boundary point of M has relative inte-
rior points and relative exterior points of M in its arbitrary neighbourhoods.
Therefore we have () cM’. Clearly (oM.

Lemma 8. The relative interior of a convex set is also convex (5).

2. Main Theorem.

We shall have

Theorem 1. If M is connected and locally convex, then its relative interior M* is
convex.

In order to prove Theorem 1, it is sufficient that we prove Theorem 1’ as
follows.

Theorem 1/ If M is closed comnnccted and locally comvex, then M is convex.

In fact, it is readily seen that the two hold: (1) if M is connected, a7 is con-
nected, (2) if M is locally convex, #7 is locally convex. If 27 is proved to be con-
vex by Theorem 1, it will be concluded that M’ is convex by Lemma 7 and 8.

4) Precisely, the point x is called a relative intarior point if S(M)NU:(x) CM for some =20,
and x a relative exterior point if S(M)NU:'%) cCM (complement of M).
5) The notations (a, %), (@, %) are defined in [1] p. 25.
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Proof of Theorem 1'.

Suppose that M is not convex, then there are points @, be M such that (aq, b)
d=M, that is, (a, ) contains a relative exterior point of M, for M is closed.
Without restriction the point & may be considered to be a relative interior
point of M by Lemma 3 and 4. ’

Let X be the set composed of all points x of M such that (b, xDcM and let
Y be M—X. Then M=XUY, X0, Y=0. Since M is connected, it holds that
either X'nY=0 or XnY’ =0; let. for instance, 7¢XnY  (being similar in other
case). Then (b, ¥JcM and a neighbourhood Ugr) contains a point peY yielding
(b, p)EM, while Ugr) can be chosen so that Ug#nM is coevex. Now every point
of (7, p) included by M is represented as flA)=1—A)p+ir, 0<A<1.

Letting lo=suplA| (b, Am)dF M for every un, 0<pu<1<1, it follows that a boundary
point of M lies in (b, f{Ao)). Because if it held that (b, f{l))cM?, there would
exist some neighbourhood Us(f4o)) such that (b, x)cM? for any xeUs(f(Ao)nM by
Lemma 6. Consequently it would follow that (b, flu))cM whenever A—e<u<4o
for an adequate ¢>0. This contradicts with the assumption of Ao.

Let g(v)=(1—w)b+ v f(k) be every point of (b, fA)) and rvo=inflv|g(v)eM*).
Then g(v) is clearly a boundary point and VNnM is convex for an adequate
neighbourhood V of g(vy). There is >0 such that g(»)eV for every v, vo—p<v<vo+7;
in detail, the points g(y') are interior points of MnaV for V, vo—y<y' <ve and
g(V'") are exterior points of MnV for v”, vo<yv’'<wvo+% by Lemma 5, accordingly
g(v”) has its neighbourhood WecM'. Utilizing Lemma 4, it holds that (5, yJnW=0
for every yeN(f(4); 6) where N(f(A); 0) is some neighbourhood of f{4,". Especially
for some &, we have (b, flA+0))nW=x0, 0<¢ <, contradicting with the defini-
tion of 4. Thus the proof of the theorem has been completed.

At the end I wish to express my hearty thanks to Prof. H. Terasaka of

Osaka University for his kind guidance.
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Notes.

(1) Separgbility of 2 exerts an effect on Lemma 6. With respect to this,
see
T. TaMURA, On a relation batween local convexitys, and entive comvexity, Journal of
Science of the Gakugei Faculty, Tokushima University, Vol. 1, (1950) p. 30 and
p. 27.

(2) The paper (1], pp. 25—30.

(3) This supposition is serious, but we don’t here treat it in detail. Of
course, it holds naturally when @2 is finite dimensional.

(4} Lemma 4, 5, and 6 equal to Corollary 1 (p. 26), Corollary 2 (p. 27), and
Lemma 3 (p. 27) respectively of this Journal Vol. 1 (1950).

(5) This is proved easily by the preceeding lemmas.

Addendum.

I would like to express my heartfelt gratitude to Prof. M. M. Day (Urbana,

I 11.) for his kind remarks in the Mathematical Reviews, Vol. 13, No. 5, as to

my paper of this Journal Vol. 1.

August, 1952.
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Introduction

In the preceding papers,® we have discussed some properties on geometry
in complex space, but have not yet considered those metric properties. In com-
plex space, there are Unitary metrics and Hermite-Kihler metrics® corresponding
to Euclidean metrics and Riemannian metrics in real space, respectively. But as
these metric functions are not regular, so it is not convenient to introduce the
theories of regular functions into the studies of geometry in complex space.
So it is requested to obtain such regular functions as whose norms have some
geometrical meanings in complex space; and to do so we shall call “Regulariza-
tion of Metrics”.

In this paper we shall give some regular functions with respect to the regu-
larization of metrics in two dimentional complex space. These results are ex-
pected to be interest in the theories of geometry in complex space and the theo-

ries of functions of several complex variables.
§ 1. Distance between two points on a complex straight line.

To consider the distance between two points on a complex straight line, we
can put the two given points to O(o, o) and P(z!, z?) without loss of generality.
As z¥ means x"+4y* (k=1, 2) and the metrics obey Unitary metrics, S=0P is

. 2 2 2 2
given by S:N/xl At 4yt (1).

So far as S is given by (1) we know nothing that S means what kind of

regular functions. Then we shall give a regular function S, whose norm is

given by (1) and whose geometrical meanings are given in complex space. In
special case, if P is on the holomorphic plane 2'=0,> S is given by x®+i7y%, and

4 i)z A)Z . - - -
“SH:N/"CH + 3% , so S is expressible by a regular function of #? and 3. So in

this case we can say that our assertion is attained. Then at first, we shall trans-
form the equation of the given holomorphic plane to the form z'=0O by some
suitable congruent transformations. On these transformations we have explained
in the preceding paper® already.

So after the transformation, the new variable 2> means the requested distance
S. By way of prevention against confution, we take X*, Y* as new variables,
instead of the old variables x¥, y*.

If we take Py (z], 2z!) to any point on the holomorphic plane OP, then the

equations of the holomorphic plane OP are



On the Regularization of Metrics in Complex Space. 29

E2 N AR R [

(I) Sox-—soy——*Sox‘FSO =0
Yo X! Yol o Kol L e 2)
Loy the g <

In (2) S, means 4/'63 +y5 + a5 + 55

If we transform #*y* under the adjoint transformation of (1), ,e,

EZ N U S
S, S, S, S,
D "Z_ E o'
So So So B0 e (3)
o mromt L |
So S, S, So
!ol_ __xol Yo _ _xoz_

xaz yoz o 9 0 3
| _ 0 a0 1 0 ey YO
Xi=g, ¥ =g, V=5, ¥ s, Y
2 2 1
1Yo a1 o~ 1_y°1, 2___N0_ o
Y = So x4+ So ¥ So X SD y
1

In (4) we can put X', Y* to 0, for P(2,2*) is on the plane '(I) so we get
0

S=X*"+i{Y*= xt+ y +——x2+ y\\+z SR ‘y T +*#y~ =(5).
S S So S S So S

We can ascertain that [|S| is N/xl + '+ ;\:‘lery‘ﬁ2 for the because of X*=Y'=0.

Obviously S is a regular function of z!, z% so our assertion is attained.

Then we get the following theorem.

Theorem 1. TVe disiance of two psint on a complex siraight line is given by the
positions of the psints only, and is independent on theiv passing through avcs on ihe holo-

morphic plane.
~
Proof. The distance of given two points P, Q along an arc PQ is given by
f;?z ds, and ds is a regular function of z*, so the integral is independent on the

choice of arcs. Then we can say that the arc length along a closed curve is
zero on a holomorphic plane.

In the Theorem 1 we can see the strong one dimentional properties of holo-
morphic planes, inspite of the two dimentional properties of general planes.

Though S is given by (5) _as a regular function of z*, but it is not very
simple. When the equations of a holomorphic plane are given by their parametric
forms, S is reduced to more simple forms.

The parametric equations of the holomorphic plane (I) is given by where
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2= (Py+iQx) (s +iv)-eereevene (6) (k=1, 2)
u, v are the parameters. So P, is on

the plane (I) we get

265 = (P +1Qu) (to +500) 1w+ vevvessssnesseerasiinss e (7)

We have from (6) and (7)
20 =Piu—@Qiv Y =Quu+ Py x,°=Pito— Qi Yo" =Qutho + Ppig+++rvrvererranrerneiiiiiiiiii (8).
If we substitute these £%%, 2, 1," to (5) we get S=a/ge?(tt+iv)- e ereveenerns (9)

In (9) +/¢ means »/(PP)+(QQ) where EPPJ:EII’;CZ, [QQ;:ika, and ¢¢ is an inde-
K= K=1

terminate phase factor whose norm is unity. In (9) P, Q are constants, so S is a

regular functions of u and v.
§ 2. Trigonometric functions, Triangular area.

On the intersecting angle between two given complex straight line, we have
explained already, but we shall explain here systematically again.

Let us put the coordinates of P, P’ to (2!, z%), (2%, z%), and the angle between
two complex lines OP and OP to 6.

The we can define that
L Z’k

e 10
cosf = ZI S g (10)

where, OP=S OP=S. If

we put the values of 2%, z® in (6) to (1), so the parameters u,u/, v,v° are elimi-

nated, then we get

{(PP 3+ (QQ 3+ ¢ {{PRO—-(P'QI}

sl = 7 ooacoacoooa: 11
cos NT I an.
In the equation (11), (PP), (QQ) are ; P.P., i Q:Q:’ respectively. From (11)
we get  [cosf|= / {CPPIHIQRYHPQI—QQI® oo a.
g8

The equation (12) means that |cosf; is coincident periectly to (7)  in the
preceding paper.”’

From the facts of the above, we get an expression of cosf, which is a regu-
lar function of parameters, and whose norm has geometric meanings in Unitary
space. So the regularization of cosfd was accomplished completely.

Then we consider the regularization of triangular areas. Let us consider the
triangle OPP”, then we can define its area to the form

F=35/212% 212"} (13),
from an extention of real space. The equation (13) means that F is a regular
function of z¥, z*, so if the norm of F has geometrical meanings, we can say

that the regularization of area was accomplished.
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To ascertain that, we may see the relation

QF|=[SISIsing. e (14).
To obtain the relation (14), at first, we get from (1) the relation

||S]|:A/zc1 +yt +x% 4yt ”S’“:A/x'l +9* +x% +9% | then by substitution of

’ 12 N /12
lcos@|?>= {Exxj+(yy]§z4:s{,2[xy] €£2) ,  which is equivalent to (12), to the re-

lation [sinf|=4/1—]|cosf|* , we get

2 /2~ e 4 z - s ‘/ s ‘2
“ SinW:s St—{lxx ]+Ey§?§%+{nyJ ' yl}

Then if we compare the value of |F|, which is reduced from (14), to that
of reduced from (13). we can ascertain that these two values of |F| are coincident
completely. So if we define the triangular area OPP by (13), we may accomplish
the regulavization of triangular area. It is to be noticed that the angle which
was used here, is' not meant the intersecting angle of the vector OP and OP,
but the intersecting angle of the holomorphic plane OP and OP’. Then if three
points O, P, P/, are on a same holomorphic plane, the values of sinf is zero, so
it is seen that the triangular area is also zero.

Let us rewriten the form of F by the use of parameters. From (13) we get

2 2
2F ={ | 5% W2 |+ o

xlx
If we put the values of 2ty of (6) to (15), we obtain
F=|(Pi+iQ)(u+iv) (Pot+iQ)(u+iv)
(P/+iQ)N)(’ +iv) (P +iQ. ) (' +iv")
=(u+iv)W+iv) [/ P _ | Q: Q: "
{([ B8] - 188 ])+i(

In (16) we see that F is a regular function of u, v, and w/, v/. At the end of the

1 A2
71,72

x°y°

1x1

y’I x’Z

L,
f. (15),

Q.
P/Qy

+|Q1P2

section we get the regularization of sinf from the relation sin0_~S:§ the mea-

nings of the norm was explained already. So if we substitute the values of F, S,
S’ from (9) and (16) to the above we get

QI P2
QP

P, P Q: Q-
P1/P2 Qz,Pe

sin = «/c Wirs

From (17) we may say that the regularization of sinf was accomplished.

il | By

_) ............... an.

From these relations we can say that the regularization of some fundamental
magnitudes in complex space were accomplished. So we shall consider the regul-

arization of arc length of complex curves in next step.
§ 3. Arc length along a complex curve.

The arc length along a complex cnrve is considered as a limiting case of a
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straight line. From (9) we get S=4./ge¥(u+iv) along a complex straight line. In
this case /g is constant, so S is a regular function of u and v, but in general
case +/ g is a function of u and v. So if we find a regular function U(uv) +7V(uv)
whose norm is /g (u®+1%), so our regularization is accomplished; but it is
impossible in general case. So the regularization of arc length along a complex
curve must be considered as a limiting case of a complex straight line. We
shall reduce the arc length along a complex curve from the metric properties of a

holomorphic surface.
Let P, Q be infinitesimally consecutive points on a holomorphic surface. We

may put the arc length 1;\Q to ds, and we get the length of a finite arc, by the
integration of ds on the holomorphic surface.

To do that, we consider two tangential planes at P and Q respectively; for
these tangential planes are holomorphic, their intersecting point is decided
uniquely. So, we put the intersecting point to I, and define the infinitesimal arc

length 1522, as the sum of the infinitesimal distances PI and IZ) on these tangen-
tial holomorphic planes. We do not know whether the sum of these infinitesi-
mal distance are regulsr or not. To these concerning facts we get the following
theorem.

Theorem 2. The infinitesimal arc length along a complex curve is given by a regular
Sfunction of parameters. So the arc length along a infinitesimally closed curve on a holo-
morphic surface considered to bz zero in locally sense.

To prove the theorem we put the parameters u, v to zero at the given point
O on the holomorphic surface. So the equation of the holomorphic surface in

the neighbourhood of O are given by

zk:(Pk‘l‘Z‘Qk)(“'{"il))‘,‘%(.Lk——l'Mk)(Z{-l—iU)E ............... (18).
In (18) P;;,Q;c,l"k,Mk are that
EA O¥F 0" _ o e
o =00 =T gu="gvy =% (19)
RO o AR et Ao b
dw ~ouov= "5 T T ow Tqugv— oor M (R=12)
in (19) x%* are the real and imaginary part of z*.
Then the equation (18) are reduced to the form (6)
¥=Pu—Qiv +%L;¢(‘Z£2—92)+Mk HY  eeeeeeereiieia (20,

YW=Qvu+Prv —%Mk(u‘—’~v‘*") +Lyuv

To prove the Theorem 2 on the holomorphic surface (20), we shall prove the
the next lemma.

Lemma. If w2 put Os to theinfinitesimal arc length OA on the hilomorphic surface,
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and ds to the infinitesimal distance OA on th? holomorphic plane which pass through the

two given points O and A, so thzre are the relation

P :<1+%{111} 5 u +%{112} 60>ds s e, D),

where {111} and {112} are the Christoffel’s syn:bols on the holomorphic surface, and ou, and
O0v are the differences of the parameters.

To prove the lemma, we shall calculate the arc length ofA by the definition
of the above. That is to say, the arc length between O(o0, 0) and A(éx, 6v) on

the holomorphic surface is given by 6i+17&, where I is the intersecting point
of the two tangential planes at O and A. So we shall obtain, at first, the equa-
tions of these tangential planes.

In general, the equations of the tangential plane of the surface x*=x"(uv) y* =y"(uv)
(k=1.2) at the point (u#, v,) are given by

D

) ) 5" e _ ] 09 0y
xk — x}t <u v >+ <, Nu=u, U + (‘ u=u, v, yk :ykcu D, ) + (—)u:u ®n+ J)u:u v e 22)}
oo ) v=1~g ov ) =1, ove ou - ( ov 2 (

ou v=g v=1]

where u, v are the parameters on the tangential plane. So from (19) we see
that the equations of tangential planes at O is

QD) ey T 8 I L 2 e G OO SON O GBI B EO X OB (23)
and the equations of tangential plane at A is

() #'=Pudu—Qudo-+y Li(ow 0%+ Midudv+ (Pot Lidu-+ Mudvy
= (Qk—Mk6u+Lk6y)7; ............ (24_)'

Y =Qr0u +Pk60~%Mk(6u2—3u2) + Li0udv + (Qu—Midu+ Lidv)u
+ (PL+L;L¢‘)‘u+MLb‘vj-v

in (24) 1, v are the parameters on the plane (11).
To obtain the coordinates of the intersecting point I, we shall get the values
of parameters u, v and i, v, which give the same values of %% 3* from the equa-

tions of (I) and (II), These values of parameters evidently are

_Ou S0 —__Ou
u_z 1)—2 u = 5

b

= ov
U=y e (25).

From the equations oi (I), (II) and (25) we get

“O-I:«/E/\O—zu+ i%’) s 26,

To obtain IA after the rejection of higher terms of dx, dv in
& 2P+ Libst 4 My00)? + >(Qc—Mibu+ Liydv)?,

we get
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TZ:\/E{l+EPL]~EQM261‘+EPM]+EQL] Bu)
g g P
then we get
O A=OI+IA
— N PLY—1(QM> PM)Y+(QL )
=/ gW0u+idN)+/ g {L—~°—— ou - L%‘;@ }(2+ 02”) ............ (27).

On the other hand we see that the fundamental tensors of the holomorphic

surfaces (20) is

11 22 1
8 =& :? Gu=ge=& e (28
then we get

0 052 = = . 0g: 0g22

LU 2((PLI—QMDy, L =CFEa((PMOL QLYY e (29).
From (29) we get

{1 _CPLY—(QM) 1) (PM)+(QL)

lll}aﬁA—_g {121 2 ey (30).

It we put OA=0I+IA=0s, /g (3u+idv)=ds, and substitute the values of (30) -

to the equation (27), we see that the equation (21) is ds= (1+ 511156 + ;‘2[ 1112}0”>

So the lemma is proved.

From the above lemma, we can prove the Theorem 2 easily. Let us take on
the holomorphic surface (20,, the three infinitesimally consecutive points O(o, 0)
A(bu. 6v) B (0w, ov"), then we show that the arc length of closed curve OCABO is
a second ordered infinitesimal with respect to dxz and dv.

) ~ N\
If we put the arc length OA AB BO to ds;, ds, ds, respectively, we get simi-

larly to (21), the followings
ds={1++ ; {agfout ‘;"{112}‘7”}‘“
352 _{1+%{ Lurow +~%~{112}<6 TN
e Yl st Do o) as an,
dss=— {1+%{111} 6'u+%{ 1o} 0'0)ds

in the equation (31) ds and ds” are given by

ds=+/g (Bu+idv), ds’:\/E(a'uﬂ—i&'v) 5 Gnao0n000000000000000005800000 (32)
From (31) evidently we have

0S:+08+0S;= {5‘{111} 6u+%{112}60§ds’
g1y 16179
_{22115“‘4_2212 ous\ ds
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If we put the values of ds” in (32) to the above we get

YR P P izé( I} —z'{lll})(a'uav—au BU)  eeneeeeenisenns 33),

From the results of (33) Theorem 2 is proved.

The results of the above seems very likely to the relation of Euclidean space
and its connected space. That is in Euclidean space, the direction of a vector
returns back to that of the initial position, after the parallel displacement along
a finife closed curve; but in the connected space it returns back in the sense of
iocal properties, and it does not, after a finite displacement. So we can say
that the theories of regular functions on Gauss’s plane correspond to the theories
of gemometry in Euclidean space, and the theories of regular functions on the
holomorphic surfaces correspond to the theories of geometry in its connected

space.

§ 4. Curvature of a complex curve.

We can define the curvature of a complex curve at O, thus.

1 im0 (34),

0 A0 53_
In (34) OCo, 0) and A (dx, ds) are two given consecutive points, and ds is the arc
length of OA, and 66 is the intersecting angle of the tangential planes at O and
A respectively. Because of 00 is infinitesimal we can substitute the value of
sindf to 00 in (34). From (23) (24) (17) we get

sinof :%{Caﬁu —bov)+ 7 (bou+adv)}y e (35),

where @, b are that
a:P1L2—P2L1+Q1M2—Q2M1 b= —P1f042+P2M1—Q2L1+Q1L2 respectively.
Because of the facts that ds is infinitesimal, we can put the value of 0ds=
/g (0u+idv) to ds in (34), so we get
N L 3 + . 1. o -
1 (adu—bov) z(bou+aov):(a+zb) .............. (36).

o g% (0u+10v) g%
So if the geometrical meanings of the norm of % are given, from (36) the

regularization of % was accomplished. Concerning the facts, we see that the

next theorem is hold.
Theorem 3. The norm of curvature of a complex curve at any giaon point, is equal

io~/ ——%K, where K is the Gauss’s total curvature of the holomorphic surface at the given

corresponding point.
Proof. If we construct the Riemann Christoffel’s tensor on the holomorphic
surface (20), from (28) and (29) we get
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2(LLY+{MM){{PP)+(QQ}—2/T PL1 QM) —2{U PM 1+ QL]}* a7
o (3D,
Simplifying the numerator of the above we can reduce it to the form 2(¢*+ 5%

On the other hand the Gauss’s total curvature K is redused to

1
Ryp=

R 1212 . __guRlzm . _Rlzzz . —2((2?‘3‘}‘52) ............... (38)_

G119 Z11822 Y] g

:N/—% B e (39),

K=

Comparing (38) to (36) we get H%

then the theorem was proved.
It is to be noticed that the Gauss’s total curvatue of holomorphic surface

is a negative quantiiy-

Conclusions.

In this paper we have discussed the metric properties of two dimention:.l
complex space only, then we expect that we refer to the metric properties of

higher dimentional complex space in the next paper.
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