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Introduction

In the preceding papers,® we have discussed some properties on geometry
in complex space, but have not yet considered those metric properties. In com-
plex space, there are Unitary metrics and Hermite-Kihler metrics® corresponding
to Euclidean metrics and Riemannian metrics in real space, respectively. But as
these metric functions are not regular, so it is not convenient to introduce the
theories of regular functions into the studies of geometry in complex space.
So it is requested to obtain such regular functions as whose norms have some
geometrical meanings in complex space; and to do so we shall call “Regulariza-
tion of Metrics”.

In this paper we shall give some regular functions with respect to the regu-
larization of metrics in two dimentional complex space. These results are ex-
pected to be interest in the theories of geometry in complex space and the theo-

ries of functions of several complex variables.
§ 1. Distance between two points on a complex straight line.

To consider the distance between two points on a complex straight line, we
can put the two given points to O(o, o) and P(z!, z?) without loss of generality.
As z¥ means x"+4y* (k=1, 2) and the metrics obey Unitary metrics, S=0P is

. 2 2 2 2
given by S:N/xl At 4yt (1).

So far as S is given by (1) we know nothing that S means what kind of

regular functions. Then we shall give a regular function S, whose norm is

given by (1) and whose geometrical meanings are given in complex space. In
special case, if P is on the holomorphic plane 2'=0,> S is given by x®+i7y%, and

4 i)z A)Z . - - -
“SH:N/"CH + 3% , so S is expressible by a regular function of #? and 3. So in

this case we can say that our assertion is attained. Then at first, we shall trans-
form the equation of the given holomorphic plane to the form z'=0O by some
suitable congruent transformations. On these transformations we have explained
in the preceding paper® already.

So after the transformation, the new variable 2> means the requested distance
S. By way of prevention against confution, we take X*, Y* as new variables,
instead of the old variables x¥, y*.

If we take Py (z], 2z!) to any point on the holomorphic plane OP, then the

equations of the holomorphic plane OP are
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In (2) S, means 4/'63 +y5 + a5 + 55

If we transform #*y* under the adjoint transformation of (1), ,e,
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In (4) we can put X', Y* to 0, for P(2,2*) is on the plane '(I) so we get
0

S=X*"+i{Y*= xt+ y +——x2+ y\\+z SR ‘y T +*#y~ =(5).
S S So S S So S

We can ascertain that [|S| is N/xl + '+ ;\:‘lery‘ﬁ2 for the because of X*=Y'=0.

Obviously S is a regular function of z!, z% so our assertion is attained.

Then we get the following theorem.

Theorem 1. TVe disiance of two psint on a complex siraight line is given by the
positions of the psints only, and is independent on theiv passing through avcs on ihe holo-

morphic plane.
~
Proof. The distance of given two points P, Q along an arc PQ is given by
f;?z ds, and ds is a regular function of z*, so the integral is independent on the

choice of arcs. Then we can say that the arc length along a closed curve is
zero on a holomorphic plane.

In the Theorem 1 we can see the strong one dimentional properties of holo-
morphic planes, inspite of the two dimentional properties of general planes.

Though S is given by (5) _as a regular function of z*, but it is not very
simple. When the equations of a holomorphic plane are given by their parametric
forms, S is reduced to more simple forms.

The parametric equations of the holomorphic plane (I) is given by where
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2= (Py+iQx) (s +iv)-eereevene (6) (k=1, 2)
u, v are the parameters. So P, is on

the plane (I) we get

265 = (P +1Qu) (to +500) 1w+ vevvessssnesseerasiinss e (7)

We have from (6) and (7)
20 =Piu—@Qiv Y =Quu+ Py x,°=Pito— Qi Yo" =Qutho + Ppig+++rvrvererranrerneiiiiiiiiii (8).
If we substitute these £%%, 2, 1," to (5) we get S=a/ge?(tt+iv)- e ereveenerns (9)

In (9) +/¢ means »/(PP)+(QQ) where EPPJ:EII’;CZ, [QQ;:ika, and ¢¢ is an inde-
K= K=1

terminate phase factor whose norm is unity. In (9) P, Q are constants, so S is a

regular functions of u and v.
§ 2. Trigonometric functions, Triangular area.

On the intersecting angle between two given complex straight line, we have
explained already, but we shall explain here systematically again.

Let us put the coordinates of P, P’ to (2!, z%), (2%, z%), and the angle between
two complex lines OP and OP to 6.

The we can define that
L Z’k

e 10
cosf = ZI S g (10)

where, OP=S OP=S. If

we put the values of 2%, z® in (6) to (1), so the parameters u,u/, v,v° are elimi-

nated, then we get

{(PP 3+ (QQ 3+ ¢ {{PRO—-(P'QI}

sl = 7 ooacoacoooa: 11
cos NT I an.
In the equation (11), (PP), (QQ) are ; P.P., i Q:Q:’ respectively. From (11)
we get  [cosf|= / {CPPIHIQRYHPQI—QQI® oo a.
g8

The equation (12) means that |cosf; is coincident periectly to (7)  in the
preceding paper.”’

From the facts of the above, we get an expression of cosf, which is a regu-
lar function of parameters, and whose norm has geometric meanings in Unitary
space. So the regularization of cosfd was accomplished completely.

Then we consider the regularization of triangular areas. Let us consider the
triangle OPP”, then we can define its area to the form

F=35/212% 212"} (13),
from an extention of real space. The equation (13) means that F is a regular
function of z¥, z*, so if the norm of F has geometrical meanings, we can say

that the regularization of area was accomplished.
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To ascertain that, we may see the relation

QF|=[SISIsing. e (14).
To obtain the relation (14), at first, we get from (1) the relation

||S]|:A/zc1 +yt +x% 4yt ”S’“:A/x'l +9* +x% +9% | then by substitution of

’ 12 N /12
lcos@|?>= {Exxj+(yy]§z4:s{,2[xy] €£2) ,  which is equivalent to (12), to the re-

lation [sinf|=4/1—]|cosf|* , we get

2 /2~ e 4 z - s ‘/ s ‘2
“ SinW:s St—{lxx ]+Ey§?§%+{nyJ ' yl}

Then if we compare the value of |F|, which is reduced from (14), to that
of reduced from (13). we can ascertain that these two values of |F| are coincident
completely. So if we define the triangular area OPP by (13), we may accomplish
the regulavization of triangular area. It is to be noticed that the angle which
was used here, is' not meant the intersecting angle of the vector OP and OP,
but the intersecting angle of the holomorphic plane OP and OP’. Then if three
points O, P, P/, are on a same holomorphic plane, the values of sinf is zero, so
it is seen that the triangular area is also zero.

Let us rewriten the form of F by the use of parameters. From (13) we get

2 2
2F ={ | 5% W2 |+ o

xlx
If we put the values of 2ty of (6) to (15), we obtain
F=|(Pi+iQ)(u+iv) (Pot+iQ)(u+iv)
(P/+iQ)N)(’ +iv) (P +iQ. ) (' +iv")
=(u+iv)W+iv) [/ P _ | Q: Q: "
{([ B8] - 188 ])+i(

In (16) we see that F is a regular function of u, v, and w/, v/. At the end of the

1 A2
71,72

x°y°

1x1

y’I x’Z

L,
f. (15),

Q.
P/Qy

+|Q1P2

section we get the regularization of sinf from the relation sin0_~S:§ the mea-

nings of the norm was explained already. So if we substitute the values of F, S,
S’ from (9) and (16) to the above we get

QI P2
QP

P, P Q: Q-
P1/P2 Qz,Pe

sin = «/c Wirs

From (17) we may say that the regularization of sinf was accomplished.

il | By

_) ............... an.

From these relations we can say that the regularization of some fundamental
magnitudes in complex space were accomplished. So we shall consider the regul-

arization of arc length of complex curves in next step.
§ 3. Arc length along a complex curve.

The arc length along a complex cnrve is considered as a limiting case of a
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straight line. From (9) we get S=4./ge¥(u+iv) along a complex straight line. In
this case /g is constant, so S is a regular function of u and v, but in general
case +/ g is a function of u and v. So if we find a regular function U(uv) +7V(uv)
whose norm is /g (u®+1%), so our regularization is accomplished; but it is
impossible in general case. So the regularization of arc length along a complex
curve must be considered as a limiting case of a complex straight line. We
shall reduce the arc length along a complex curve from the metric properties of a

holomorphic surface.
Let P, Q be infinitesimally consecutive points on a holomorphic surface. We

may put the arc length 1;\Q to ds, and we get the length of a finite arc, by the
integration of ds on the holomorphic surface.

To do that, we consider two tangential planes at P and Q respectively; for
these tangential planes are holomorphic, their intersecting point is decided
uniquely. So, we put the intersecting point to I, and define the infinitesimal arc

length 1522, as the sum of the infinitesimal distances PI and IZ) on these tangen-
tial holomorphic planes. We do not know whether the sum of these infinitesi-
mal distance are regulsr or not. To these concerning facts we get the following
theorem.

Theorem 2. The infinitesimal arc length along a complex curve is given by a regular
Sfunction of parameters. So the arc length along a infinitesimally closed curve on a holo-
morphic surface considered to bz zero in locally sense.

To prove the theorem we put the parameters u, v to zero at the given point
O on the holomorphic surface. So the equation of the holomorphic surface in

the neighbourhood of O are given by

zk:(Pk‘l‘Z‘Qk)(“'{"il))‘,‘%(.Lk——l'Mk)(Z{-l—iU)E ............... (18).
In (18) P;;,Q;c,l"k,Mk are that
EA O¥F 0" _ o e
o =00 =T gu="gvy =% (19)
RO o AR et Ao b
dw ~ouov= "5 T T ow Tqugv— oor M (R=12)
in (19) x%* are the real and imaginary part of z*.
Then the equation (18) are reduced to the form (6)
¥=Pu—Qiv +%L;¢(‘Z£2—92)+Mk HY  eeeeeeereiieia (20,

YW=Qvu+Prv —%Mk(u‘—’~v‘*") +Lyuv

To prove the Theorem 2 on the holomorphic surface (20), we shall prove the
the next lemma.

Lemma. If w2 put Os to theinfinitesimal arc length OA on the hilomorphic surface,
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and ds to the infinitesimal distance OA on th? holomorphic plane which pass through the

two given points O and A, so thzre are the relation

P :<1+%{111} 5 u +%{112} 60>ds s e, D),

where {111} and {112} are the Christoffel’s syn:bols on the holomorphic surface, and ou, and
O0v are the differences of the parameters.

To prove the lemma, we shall calculate the arc length ofA by the definition
of the above. That is to say, the arc length between O(o0, 0) and A(éx, 6v) on

the holomorphic surface is given by 6i+17&, where I is the intersecting point
of the two tangential planes at O and A. So we shall obtain, at first, the equa-
tions of these tangential planes.

In general, the equations of the tangential plane of the surface x*=x"(uv) y* =y"(uv)
(k=1.2) at the point (u#, v,) are given by

D

) ) 5" e _ ] 09 0y
xk — x}t <u v >+ <, Nu=u, U + (‘ u=u, v, yk :ykcu D, ) + (—)u:u ®n+ J)u:u v e 22)}
oo ) v=1~g ov ) =1, ove ou - ( ov 2 (

ou v=g v=1]

where u, v are the parameters on the tangential plane. So from (19) we see
that the equations of tangential planes at O is

QD) ey T 8 I L 2 e G OO SON O GBI B EO X OB (23)
and the equations of tangential plane at A is

() #'=Pudu—Qudo-+y Li(ow 0%+ Midudv+ (Pot Lidu-+ Mudvy
= (Qk—Mk6u+Lk6y)7; ............ (24_)'

Y =Qr0u +Pk60~%Mk(6u2—3u2) + Li0udv + (Qu—Midu+ Lidv)u
+ (PL+L;L¢‘)‘u+MLb‘vj-v

in (24) 1, v are the parameters on the plane (11).
To obtain the coordinates of the intersecting point I, we shall get the values
of parameters u, v and i, v, which give the same values of %% 3* from the equa-

tions of (I) and (II), These values of parameters evidently are

_Ou S0 —__Ou
u_z 1)—2 u = 5

b

= ov
U=y e (25).

From the equations oi (I), (II) and (25) we get

“O-I:«/E/\O—zu+ i%’) s 26,

To obtain IA after the rejection of higher terms of dx, dv in
& 2P+ Libst 4 My00)? + >(Qc—Mibu+ Liydv)?,

we get
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TZ:\/E{l+EPL]~EQM261‘+EPM]+EQL] Bu)
g g P
then we get
O A=OI+IA
— N PLY—1(QM> PM)Y+(QL )
=/ gW0u+idN)+/ g {L—~°—— ou - L%‘;@ }(2+ 02”) ............ (27).

On the other hand we see that the fundamental tensors of the holomorphic

surfaces (20) is

11 22 1
8 =& :? Gu=ge=& e (28
then we get

0 052 = = . 0g: 0g22

LU 2((PLI—QMDy, L =CFEa((PMOL QLYY e (29).
From (29) we get

{1 _CPLY—(QM) 1) (PM)+(QL)

lll}aﬁA—_g {121 2 ey (30).

It we put OA=0I+IA=0s, /g (3u+idv)=ds, and substitute the values of (30) -

to the equation (27), we see that the equation (21) is ds= (1+ 511156 + ;‘2[ 1112}0”>

So the lemma is proved.

From the above lemma, we can prove the Theorem 2 easily. Let us take on
the holomorphic surface (20,, the three infinitesimally consecutive points O(o, 0)
A(bu. 6v) B (0w, ov"), then we show that the arc length of closed curve OCABO is
a second ordered infinitesimal with respect to dxz and dv.

) ~ N\
If we put the arc length OA AB BO to ds;, ds, ds, respectively, we get simi-

larly to (21), the followings
ds={1++ ; {agfout ‘;"{112}‘7”}‘“
352 _{1+%{ Lurow +~%~{112}<6 TN
e Yl st Do o) as an,
dss=— {1+%{111} 6'u+%{ 1o} 0'0)ds

in the equation (31) ds and ds” are given by

ds=+/g (Bu+idv), ds’:\/E(a'uﬂ—i&'v) 5 Gnao0n000000000000000005800000 (32)
From (31) evidently we have

0S:+08+0S;= {5‘{111} 6u+%{112}60§ds’
g1y 16179
_{22115“‘4_2212 ous\ ds
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If we put the values of ds” in (32) to the above we get

YR P P izé( I} —z'{lll})(a'uav—au BU)  eeneeeeenisenns 33),

From the results of (33) Theorem 2 is proved.

The results of the above seems very likely to the relation of Euclidean space
and its connected space. That is in Euclidean space, the direction of a vector
returns back to that of the initial position, after the parallel displacement along
a finife closed curve; but in the connected space it returns back in the sense of
iocal properties, and it does not, after a finite displacement. So we can say
that the theories of regular functions on Gauss’s plane correspond to the theories
of gemometry in Euclidean space, and the theories of regular functions on the
holomorphic surfaces correspond to the theories of geometry in its connected

space.

§ 4. Curvature of a complex curve.

We can define the curvature of a complex curve at O, thus.

1 im0 (34),

0 A0 53_
In (34) OCo, 0) and A (dx, ds) are two given consecutive points, and ds is the arc
length of OA, and 66 is the intersecting angle of the tangential planes at O and
A respectively. Because of 00 is infinitesimal we can substitute the value of
sindf to 00 in (34). From (23) (24) (17) we get

sinof :%{Caﬁu —bov)+ 7 (bou+adv)}y e (35),

where @, b are that
a:P1L2—P2L1+Q1M2—Q2M1 b= —P1f042+P2M1—Q2L1+Q1L2 respectively.
Because of the facts that ds is infinitesimal, we can put the value of 0ds=
/g (0u+idv) to ds in (34), so we get
N L 3 + . 1. o -
1 (adu—bov) z(bou+aov):(a+zb) .............. (36).

o g% (0u+10v) g%
So if the geometrical meanings of the norm of % are given, from (36) the

regularization of % was accomplished. Concerning the facts, we see that the

next theorem is hold.
Theorem 3. The norm of curvature of a complex curve at any giaon point, is equal

io~/ ——%K, where K is the Gauss’s total curvature of the holomorphic surface at the given

corresponding point.
Proof. If we construct the Riemann Christoffel’s tensor on the holomorphic
surface (20), from (28) and (29) we get
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2(LLY+{MM){{PP)+(QQ}—2/T PL1 QM) —2{U PM 1+ QL]}* a7
o (3D,
Simplifying the numerator of the above we can reduce it to the form 2(¢*+ 5%

On the other hand the Gauss’s total curvature K is redused to

1
Ryp=

R 1212 . __guRlzm . _Rlzzz . —2((2?‘3‘}‘52) ............... (38)_

G119 Z11822 Y] g

:N/—% B e (39),

K=

Comparing (38) to (36) we get H%

then the theorem was proved.
It is to be noticed that the Gauss’s total curvatue of holomorphic surface

is a negative quantiiy-

Conclusions.

In this paper we have discussed the metric properties of two dimention:.l
complex space only, then we expect that we refer to the metric properties of

higher dimentional complex space in the next paper.
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