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The set M in the separable real Banach space £ (1) is said to be locally
convex if every point x of the closure a7 is a convex point, that is, there is a
positive number ¢ such that U.(x)nM?", if non-null, is convex for any positive
e<d. We have proved already in (2) that if M is locally convex and arcweise
connected, its interior M* is cnvex.

In this note we shall introduce the concept of homogeneity into local convex
sets to lay more somewhat firmly the foundation of our theory and then shall
give the proof of main theorem by discussing the case where M is closed under

the weaker condition and some assumption.

1. Preliminaries.

We denote by S(M) the subspace® spanned by M i.e. the minimal subspace
of 2 which contains M. If SULx)nM) =S U(y)nM)for every different x, yeif and
every positive numbers ¢, ¢/, then M is said to be homogeneous. This definition
is equivalent to the equality that S(U:(x)nM)=S(M) for every x ¢ M and every ¢ >0.

Lemma 1. If M is convex, them M is homogeneous.

Proof. Let Usa) be a neighbourhood of a point ae i .

Suppose S(Ug(a)nM)EFS(M), then there is a point be S(IM)—SU(a)nM). It can be

easily seen that f{A)=1—A)a+ 15, o</I<TE_£5[T, belongs to SM)—SUs(a)nM).

This contradicts to the definition of S(U:la)nM).

More precisely,

Lemma 2. If M is connected and locally convex, then M is homogencous.

Proof. Suppose that the theorem is not true. Let Usa) be a neighbourhood
of a point ae i7. We denote by X the set of points x belonging to 7 which
satisfy S(Usx)nM)=SULa)nM) for every 6 and fixed e. Let Y=m—X. Then
X=0, and Y=0. Since M is connected, a7 is also so, that is, X'nY=0» or
XnY %0, where we take up X'nY=0 (similarly in the other case). Let beX'nY.
We can choose-a neighbourhood Vib) which contains x€X and whose ‘intersection
with M is convex. By Lemma 1, V\b)nM is homogene=ous, that is, S(Us(x)nM)=
S(U(b)nM); accordingly we have S(U,(a)nM)=SUb)nM) for any 3, ¢>0, contra-
dicting to the assumption that #¢Y. Lemma 2 has thus been proved.

1) Uelx)=E(z; |lz—2 |[<e.
2) Here the subspace means the linear subspace.
3) X' is the derived set of X.
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By a relative interior (exterior) point of M, hereafter, we mean the interior
(exterior) point® of M in the subspace S(M). The set of all relative interior
(exterior) points of M is denoted by M?* (M) which is called the relative interior
(exterior) of M.

Now we suppose that convex sets always contain relative interior points (3).
Then we have readily

Lemma 3. If M is connected and locally convex, then it holds that ar= M.

Proof. Clearly poami. We now show afciari. Taking any zed; Ufx)nM is
convex for some ¢>0. By the presupposition and Lemma 2, there are x.eU:(x)nM
and >0 such that

SN Us(xo)=SU:'x)n M)n Us'xo) cU(x)n M M.

Hence we have Mc=ife.

Further we arrange three lemmas (4).

Lemma 4. L2t a, be 2 and c=(I—2)a+b. Given a neighbourhood Ulc), we can find
V{b) such that Ca, x)nU(c)x0? for any xeV(b).

—>
Lemma 5. L2t M bz a convex set, and M* {ts bounday. If ae M, re M*, then(a, vy M?

whzre (a, ?):fz; z=(I—Na+ir, A>13

Lemmn 6. Lt b b2 a convex point of M and let Ca, by)cM'. Then theve is a suita-
ble neghbsurhizod Ub) of b such that Ca, x)cM! for every xeUb)n M.

Lemma 7. If M is connected and locally convex, then (31) =M.

Proof. We can show easily that any boundary point of M has relative inte-
rior points and relative exterior points of M in its arbitrary neighbourhoods.
Therefore we have () cM’. Clearly (oM.

Lemma 8. The relative interior of a convex set is also convex (5).

2. Main Theorem.

We shall have

Theorem 1. If M is connected and locally convex, then its relative interior M* is
convex.

In order to prove Theorem 1, it is sufficient that we prove Theorem 1’ as
follows.

Theorem 1/ If M is closed comnnccted and locally comvex, then M is convex.

In fact, it is readily seen that the two hold: (1) if M is connected, a7 is con-
nected, (2) if M is locally convex, #7 is locally convex. If 27 is proved to be con-
vex by Theorem 1, it will be concluded that M’ is convex by Lemma 7 and 8.

4) Precisely, the point x is called a relative intarior point if S(M)NU:(x) CM for some =20,
and x a relative exterior point if S(M)NU:'%) cCM (complement of M).
5) The notations (a, %), (@, %) are defined in [1] p. 25.
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Proof of Theorem 1'.

Suppose that M is not convex, then there are points @, be M such that (aq, b)
d=M, that is, (a, ) contains a relative exterior point of M, for M is closed.
Without restriction the point & may be considered to be a relative interior
point of M by Lemma 3 and 4. ’

Let X be the set composed of all points x of M such that (b, xDcM and let
Y be M—X. Then M=XUY, X0, Y=0. Since M is connected, it holds that
either X'nY=0 or XnY’ =0; let. for instance, 7¢XnY  (being similar in other
case). Then (b, ¥JcM and a neighbourhood Ugr) contains a point peY yielding
(b, p)EM, while Ugr) can be chosen so that Ug#nM is coevex. Now every point
of (7, p) included by M is represented as flA)=1—A)p+ir, 0<A<1.

Letting lo=suplA| (b, Am)dF M for every un, 0<pu<1<1, it follows that a boundary
point of M lies in (b, f{Ao)). Because if it held that (b, f{l))cM?, there would
exist some neighbourhood Us(f4o)) such that (b, x)cM? for any xeUs(f(Ao)nM by
Lemma 6. Consequently it would follow that (b, flu))cM whenever A—e<u<4o
for an adequate ¢>0. This contradicts with the assumption of Ao.

Let g(v)=(1—w)b+ v f(k) be every point of (b, fA)) and rvo=inflv|g(v)eM*).
Then g(v) is clearly a boundary point and VNnM is convex for an adequate
neighbourhood V of g(vy). There is >0 such that g(»)eV for every v, vo—p<v<vo+7;
in detail, the points g(y') are interior points of MnaV for V, vo—y<y' <ve and
g(V'") are exterior points of MnV for v”, vo<yv’'<wvo+% by Lemma 5, accordingly
g(v”) has its neighbourhood WecM'. Utilizing Lemma 4, it holds that (5, yJnW=0
for every yeN(f(4); 6) where N(f(A); 0) is some neighbourhood of f{4,". Especially
for some &, we have (b, flA+0))nW=x0, 0<¢ <, contradicting with the defini-
tion of 4. Thus the proof of the theorem has been completed.

At the end I wish to express my hearty thanks to Prof. H. Terasaka of

Osaka University for his kind guidance.
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Notes.

(1) Separgbility of 2 exerts an effect on Lemma 6. With respect to this,
see
T. TaMURA, On a relation batween local convexitys, and entive comvexity, Journal of
Science of the Gakugei Faculty, Tokushima University, Vol. 1, (1950) p. 30 and
p. 27.

(2) The paper (1], pp. 25—30.

(3) This supposition is serious, but we don’t here treat it in detail. Of
course, it holds naturally when @2 is finite dimensional.

(4} Lemma 4, 5, and 6 equal to Corollary 1 (p. 26), Corollary 2 (p. 27), and
Lemma 3 (p. 27) respectively of this Journal Vol. 1 (1950).

(5) This is proved easily by the preceeding lemmas.
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