Note on Inverses in Rings. ## Masaru Osima Mathematical Institute, Faculty of Science, Okayama University. (Received September. 30, 1952) Let R be an arbitrary ring. Two idempotent elements e and f are called isomorphic in R if there exist two elements a and b such that ab=e and ba=f. We write then $e \cong f$. Clearly, by this definition, the set of all idempotent elements in R are divided into classes of idempotent elements. By (1)¹⁾, we may assume in the above definition that $a \in eRf$ and $b \in fRe$. Lemma 1. If an idempotent element e is isomorphic to zero, then $\epsilon=0$. **Lemma 2.** If two idempotent elements e and f are isomorphic and if e is a sum of two orthogonal idempotent elements e_1 and e_2 , then $f=f_1+f_2$, where f_1 and f_2 are orthogonal idempotent elements such that $f_1\cong e_1$ and $f_2\cong e_2$. *Proof.* From e=ab and f=ba, we have be=fb and so bea=fba=f. Hence $f=bea=be_1a+be_2a$. We see easily that be_1a and be_2a are orthogonal idempotent elements such that $be_1a\cong e_1$ and $be_2a\cong e_2$. Lemma 3. (Azumaya (1)). Two idempotent elements e and f are isomorphic if and only if the left ideals Re and Rf are R-isomorphic: $Re \cong Rf$. Lemma 4. If the left ideals Re and Rf are R-isomorphic, then the subrings eRe and fRf are isomorphic. *Proof.* From e=ab and f=ba ($a \in eRf$, $b \in fRe$), we see that eRe and fRf are isomorphic under the mapping $x \longrightarrow bxa$ ($x \in eRe$). In the following we assume that R contains an identity 1. Generally, ab=1 in R does not imply ba=1. Lemma 5. The following conditions are equivalent: - (i) ab=1 in R implies always ba=1. - (ii) If $e \cong 1$, then e = 1. - (iii) For any idempotent element $e \neq 1$, R and Re are not R-isomorphic. *Proof.* Suppose that R contains a pair of elements a, b such that ab=1 but $ba \neq 1$. Then ba is an idempotent element and $ba \cong 1$. **Theorem 1.** If R is a ring with an identity that contains two elements a and b such that ab=1, $ba \neq 1$, then - (i) R contains an infinite number of idempotent elements e_i such that $e_i \cong 1$. - (ii) R contains an infinite number of subrings R_i such that the R_i are isomorphic to R. - (iii) R contains a left ideal that is a direct sum of an infinite number of R-isomorphic left ideals (2). - (iv) There exists an infinite properly descending chain of principal left ideals generated by idempotent elements: ¹⁾ Numbers in brackets refer to the references at the end of the paper. $$R = Re_0 \supset Re_1 \supset Re_2 \supset \dots \qquad (e_0 = 1)$$ such that the factor spaces Re_i/Re_{i+1} $(i=0,1,2,\dots)$ are R-isomorphic. *Proof.* Since ba is an idempotent element, we have 1=(1-ba)+ba, where 1-ba and ba are orthogonal idempotent elements. Then we have by Lemma 2 $ba=(ba-b^2a^2)+b^2a^2$, where $ba-b^2a^2$ and b^2a^2 are orthogonal idempotent elements and so $$1 = (1-ba) + (ba-b^2a^2) + b^2a^2$$, where $$1-ba\cong ba-b^2a^2$$, $1\cong ba\cong b^2a^2$. Continuing in this way, we have for any positive integer n $$1 = \sum_{i=1}^{n} (b^{i-1}a^{i-1} - b^i a^i) + b^n a^n$$ (a⁰ = b⁰ = 1), where $$1 \cong ba \cong b^2a^2 \cong \cdots \cong b^na^n$$, $$1-ba\cong ba-b^2a^2\cong\cdots\cdots\cong b^{n-1}a^{n-1}-b^na^n$$. Since $1-ba\neq 0$, we see from Lemma 1 that $b^{i-1}a^{i-1}-b^ia^i\neq 0$ and so $b^ia^i\neq b^ja^j$ $(i\neq j)$. Hence there exists an infinite number of idempotent elements b^ia^i such that $b^ia^i\cong 1$. If we set $b^ia^i=e_i$, then $$R \supseteq e_1 R e_1 \supseteq e_2 R e_2 \supseteq \cdots$$ and by Lemma 4 $$R \cong e_i R e_i$$ $(i = 1, 2, 3, \dots).$ Further if we set $b^{i-1}a^{i-1}-b^ia^i=f_i$, then the left ideal $i=\sum_i Rf_i$ is a direct sum of R-isomorphic left ideals Rf_i . Finally $$R = Re_0 \supset Re_1 \supset Re_2 \supset \cdots$$ is an infinite properly descending chain of left ideals such that $Re_i/Re_{i+1}\cong Rf_i$. For example, let R be a (complete) direct sum of an infinite number of simple algebras. Then, by Theorem 1 (iv), we see that ab=1 in R always implies ba=1. Theorem 2. Let R be a ring with an identity. Suppose that R splits into a direct sum of an infinite number of left ideals: $$R = \mathfrak{l}_1 + \mathfrak{l}_2 + \mathfrak{l}_3 + \cdots$$ If R contains an infinite number of R-isomorphic left ideals l_i , then there exists a pair of elements a, b in R such that ab=1 but $ba \neq 1$. *Proof.* We see easily that every \mathfrak{l}_i is a left ideal generated by an idempotent element: $\mathfrak{l}_i = Re_i$. Let us assume $$Re_{i_1}\cong Re_{i_2}\cong Re_{i_3}\cong \cdots$$ We may assume without loss of generality that $e_{i1}=e_1$. Let Re_{ik-1} be R-isomorphic to Re_{ik} under the mapping $a_{ik-1} \longrightarrow a'i_k$. Then the mapping $$a = \sum_{i=1}^{n} a_i \longrightarrow a^* = \sum_{i=1}^{n} a_i^*$$ $(a_i, a_i^* \in Re_i),$ where $a_i^* = a_i$ if $i \neq i_k$ $(k=1, 2, \dots)$ and $a_{i_k}^* = a_{i_k}'$ $(k=2, 3, \dots)$, gives the *R*-isomorphism between *R* and $R(1-e_1)$. Hence, by Lemma 5, *R* contains a pair of elements a, b such that ab=1 but $ba \neq 1$. We denote by r(a) (l(a)) the right (left) annihilator of an element a. **Lemma 6.** If ab=1, then l(a)=0 and r(a)=r(ba)=(1-ba)R. Lemma 7. If an element a of a ring with an identity has a unique right inverse b, then b is the inverse of a. *Proof.* Since a(b+1-bx)=1, we have 1-bx=0. Theorem 3 (Jacobson (2)). If R contains two elements a and b such that ab=1 but $ba \neq 1$, then the element a has an infinite number of right inverses. *Proof.* Since l(a)=0, we have $a^i \neq 0$ $(i=1, 2, \dots)$ and so $(1-ba)a^i \neq 0$. Moreover we have $1-ba \neq (1-ba)a^i$ because $((1-ba)a^i)^2=0$. Hence $$(1-ba)a^i + (1-ba)a^j \qquad (i \neq j).$$ If we set $b_i = b + (1-ba)a^i$, then $ab_i = 1$ $(i = 0, 1, 2, \dots)^2$. If b and b' are two distinct right inverses of a, then, by Lemma 6, $ba \neq b'a$. But we have $$Rb'a=Ra=Rba$$. ## References - [1] G. AZUMAYA, On generalized semi-primary rings and Krull-Remak-Schmidt's theorem, Jap. J. Math., Vol. 19 (1948). - [2] N. JACOBSON, Some remarks on one-sided inverses, Proc. Amer. Math. Soc., Vol. 1 (1950). ²⁾ The bi thus constructed are equal to those in (2), Theorem 3.