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In these notes, we shall first state of the necessary and sufficient conditions
that a function should be homogeneous polynomials of degree n, in § 1. In § 2,
we shall investigate whether some of the theorems of Schwarz on regular func-
tions of complex variables will be able to be extended to the case of functions
whose domain and range both lie in complex-Banach-spaces or not. Finally, in
§ 3, we shall investigate the state of the boundary of the domain G(hyg).

§ 1. Homogeneous polynomials.

Let E and E' be two complex-Banach-spaces.
Definition 1. An E’-valued function x' =p(x) defined on E is called a homogeneous
polynomial of degree n, if the jfollowing conditions arve satisfied: (1) p'x) is strongly

continuous at each point of E, (2) for each x and y in E, and for any complex numb:r

n

a, plx+ay) can bz expressed as p(x+ay):k23pk(x, »a®, where Pi(x,y) are arbitrary E'-

valued functions of two variables x and y, (3) Pu(x, y)x0 for some x and y, (4) plax)=
a'p(x).

Definition 2.%0 An E'-valued function x' = f(x) defined on a domain D of E is called
analytic, if it is strongly comtinuous and G-iifferentiable on D.

Theorem 1. The necéssary and sufficient conditions that p(x) chould be a homogeneous
polynomial of degree n ave that it is analytic on E and satisfies plax)=a™p(x).

Proof. If p(x) is a homogeneous polynomial of degree n, it satisfies plax)=
ap(x) by (4) and is strongly continuous by (1). The condition (2) shows that
p(x) is G-differentiable at any point in E. Thus we see that the conditions are
necessary. Conversely, let p(x) be analytic at any point of E and satisfies p(ax)
=a"p(x). Then we have
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where C is a circle of radius r and r > .
While, p(ax)=a"p(x), we have
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Put »Ef:ﬁy then df:—?d‘g and ?’ﬁm:” n+1
Therefore, we have
1 Plx+£3) 1 5
_247-”_ ci &—E‘,ﬁ-lfy— df :——»2;”—. o P(vr +y>77nb—7 1 d77 )

Since the left side integral is taken counterclockwise along the circle [&]=7,

the right side integral is taken clockwise along the circle |7 | :%, Integrating

counterclockwise along the circle |7 :%, we have
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Since p(yx+y) is regular on |y| £ >

1 7 m—-n-1 —_ 7 H @ 217 — 7
BT ﬁ/P(gx-{—y)v dyp=P(y), when m=n,
=0, for m>n+1,
1 P(x+¢&y) _
Put o2ni Je E?n[+1 dE _Pm<x y> ’
then we have Plx+tay)= an P(x,y)a™ .
m=0

Since pu(%, ¥)=py), pu(x, y)F£0. This completes the proof.
Corollary. Thz necessary and sufficicnt condition that u(x) should bz linear is that
wx) is analytic on E and satisfies plax)=au(x).
§ 2. Extens’on of the Schwarz’s theorem.

The purpose of this chapter is to extend the Schwarz’s theorem of complex
variables to the case of complex-Banach-spaces. The theorem of Schwarz is
described as follows: If f(z) is regular in the circle [z]| <R and satisfies f(0)=0

M

and |f(z)! <M in the circle |z| <R, then Jf(z)[éﬁlzl. If the equality is establ-

ished at a point of |z| <R, then f(z)Elge“’z,

This theorem is not always true in our cases.

Theorem 2. Lot an E'-valuzd function f(x) defined in the sphae|x| <R be analytic
and satisfies f(0)=0 and |Ax)|£M in thz sbhere |x|<R. Then Hf(x)_l[é%![x][

Proof. Since f(x) is analytic in the sphere I[x||<R and f(0)=0, we have
f<x>:nz=1h"<x)’ .......................................... (1)

for an arbitrary x in [x[|<R, where h,(x) is a homogencous polynomial of degree
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n. Now, we fix x in [x]|<R. From (1), we have

flax) = nzjl h(x) a”,

f(ax) is analytic about «, when ]ai<% , where clearly —”—5”—>1. Since f(ax)
H

is an analytic function of «, f(ﬁé%): ihu(x)au—l is also analytic in the Tcircle
n=1

\ R . .. . . R

le] <”—X”—_ Let r be an arbitrary positive number which satisfies r<—“-X-”—,

then J!Lgi)\lélf, when |a|=r, because [f(ax)|<M and |a|=r. Since Hi%ix@)l! is

subharmonic as to a, H-fﬁzi)![ takes its maximum on lal=r. Thus we see that

Il —f%}illé%/f, for |a|<Lr. Since r is an arbitrary positive number satisfying
f M R M
r <o we have 1122y o M /R R,
for [al<% 1), Put a=1, and we have
”f(x)”é_%”xu. .......................................... (2)

Since x is an arbitrary point in [x[|<R, (2) is held for [x[[<R. This completes
the proof.
In concluding this paragraph, we shall aford an example f(x) which satisfies
following conditions
1) £(0)=0,
(2) f(x) is analytic on |x|<1,
3) f®))N<M on [x]<1,
4) )] =M]|x| for some points in |x|<1,
and yet [f(x)IZ=M|x]

X112 %12\
Let X:( ) be a matrix of (2, 2)type of complex numbers, and [|X| =
X2z Xz

Max{|%s|, |%:2], |%2z], |#22]). Then the set of such X is clearly complex-Banach-
abd

d>X where ®>a>b>c>d>0, and M=a-+b. Then
¢ d '

ab X11X12 X1+ DXer Gx2+ b %22
#(X)= =
cd X21X22 CX11+ dX21 CXpot d %22/ .

spaces. Put ,u(X):(

Clearly #(X) is a linear function and we see that #(0)=0 and x(X)is an analytic

function on whole spaces by Corollary of Theorem 1. Since Sup [u(X)|=a+b
Nxn=1

A o\ )
=M, we have ||u(X)| <M, when | X||<1. Put X1:< )and X2:< ) where 0<2<1.
A2 o A/,
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Then || X:=21 and |X:|=2. Since
al+bi bl

) (XD =4a+b)=M-| X,
cA+dar di/,

n(X)= =<

al bl
While /,£<X2>=
vcA d2

[p (XD =2a<<a(a+b)=|X.[-M .

> and we see that

§ 3. On the boundary of G(hn)*®,
Definition 8. G(hy) is the interior of the vegion of convergence of a power series
) 556 hw ().
Definition 4. Let x bz an arbitrary point on ||x)=1. R(x) is the upperbound of |a],
for whichn 20‘ ho{ax) is convargent and analytic at ax.
Theorem 3. If la|=R(x), ax is the bouncary point of Glhy).

Proof. Since 3! hu(x) is analytic in G(ha}*®, 3 hu(x) is analytic at cx while
0 n=0

n=

ax lies in G(hy)**®, where ||x[|=1. But E h.(ax) is not analytic when ax lies
n=0

beyond G(hu), because 3! hy(x) does not always converge in any neighbourhood
n=0

of awx. This proves that ax is a boundary point of G(hn).
Theorem 4. Rx) is lower semi-continuous on |x|= 1.
Proof, If R(x) is not lower semi-continuous at a point x, on [|x]|=1, there
exists a sequence {x;} such that x; tends to x, and satisfies
R(x;) < R(x,)—e (7=1,2,3,....),
for a suitable positive number €. While, if |a|=R(x;), there exists at least a

point & on |a|=R(x;) such that «;x; is a singular point of 3 /. (x). Since
n=0

lai| = R(x;)<R(%)—e¢, {a;} has at least a limiting point «, Then we have a
subsequence {ay} of {ci;} which converges to «,. Thus we see that a4, converges
to aoxe. Since %o is a limiting point of singular points ai%, ayx, is also a

singular point of Z“i hn(x). Since |a: | <R(Xo)—¢€ , |ao] <R(Xo)—e.
n=0 -
This contradicts that 5) ha(x) is analytic at ax, , when |a]<R(x).
n=0

References

*) A, E. TAYLOR: (1) Analytic functions in general analysis, Annali della R. Scuola Nor-
male Superiore di Pisa, Seri. 11 Vol. vl (1938). (2) Additions to the theory of polyno-
mials in normed lizear spaces (Tohoku M. J. 44. 1938). (3) On the properties of
aralytic functions in abstract spaces, Math. Arn. 115, 1938,

**) E. HILLE: Functional analysjs and semi-groups. p. 85.

#%¥) See Theorem 4. 7. 1 (HILLE, Functional analysis and semigroup, page 83). If G(hn) is
non-void, then G(hn) is a c-convex c-star about (. That is, if XeG(hn), then aXeG(hn),
where |a | < 1.



