Some Remarks on Semi-groups and All Types of Semi-groups of Order 2, 3.

Takayuki Tamura

Mathematical Institute, Gakugei College, Tokushima University.

(Received September 30, 1952)

In this paper we shall relate first to a certain necessary and sufficient condition for an algebra to be a semi-group and some properties of its principal ideals(1)⁰⁾ as the addendum to our results in this Journal, vol 2, secondly to some semi-group extensions, i.e., semi-groups which contain one or two given semi-groups, and finally we shall utilize them and determine all types of semi-groups of order 2 and 3. We note that no assumption of finiteness is necessary in § 1, 2.

§ 1. The Condition and Properties of Semi-group.

It was proved in (2) that the algebra S was a semi-group if and only if it was isomorphic (anti-isomorphic) on the right (left) faithful realization system. Here we try to establish another condition which is simpler. The present notations are somewhat different from those used previously (3). The signs R_a^{λ} , L_a^{λ} stand for two different meanings as the case may be: one is the realization of a, i.e., the mapping of S into itself, $R_a(x) = x\lambda a$, $L_a(x) = a\lambda x$, the other is the subset, called principal ideal. The equality as the set is written $R_a = R_b^{\lambda}$ to distinguish it from the equality $R_a^{\lambda} = R_b^{\lambda}$ as the mapping. While the discussion is proceeded under an operation, the sign " λ " may be omitted.

Theorem 1. The algebra $S(\lambda)$ is a semi-group if and only if $R_a^{\lambda}L_b=L_b^{\lambda}R_a^{\lambda}$ for every $a, b \in S$.

More generally,

Theorem 2. Let λ and μ be semi-group operations defined in S. It holds that $\lambda \gtrsim \mu$ (4) if and only if $R_a^{\mu} L_b^{\lambda} = L_b^{\lambda} R_a^{\mu}$ for every $a, b \in S$.

Proof. The theorems are easily obtained from the following.

$$\left\{R_a^{\mu}L_b^{\lambda}\right\}(x) = L_b^{\lambda}\left\{R_a^{\mu}(x)\right\} = L_b^{\lambda}(x\mu x) = b\lambda(x\mu a),$$

$$\left\{L_b^{\lambda}R_a^{\mu}\right\}(x) = R_a^{\mu}\left\{L_b^{\lambda}(x)\right\} = R_a^{\mu}(b\lambda x) = (b\lambda x)\mu a$$

⁰⁾ Numbers in brackets [] refer to the references at the end of the paper.

¹⁾ We called it a transformation previously (2).

²⁾ We defined $\left\{R_a^{\lambda}L_b^{\lambda}\right\}(x) = L_b^{\lambda}\left\{R_a^{\lambda}(x)\right\}$ in [2]

for every a, b, $x \in S$. It becomes Theorem 1 in case that $\lambda = \mu$.

Theorem 3. If $x \in R_a$, then $R_x \subset R_a$, and if $x \in L_x$ then $L_x \subset L_a$.

Proof, x=ya for some $y \in S$. zx=z(ya)=(zy)a for any $z \in S$; hence $R_x \subset R_a$. Similarly $L_x \subset L_x$.

Let S be a semi-group with one at least idempotent hereafter.

Theorem 4. Let a be an idempotent of S.

- (1) If $x \in R_a$, then xa = x.
- (2) If and only if $R_a = S$, a is a right unit.
- (3) If $R_a = \{a\}$ and ab = b, then $R_b = \{b\}$.
- (4) If $R_a = S$ and ac = ab, then xc = xb for all $x \in S$.

In the dual cases they are similar except slight modification.

Proof. (1) Since x = ya for some $y \in S$, xa = (ya)a = y(aa) = ya = x. (2) is evident by (1). (3) xb = x(ab) = (xa)b = ab = b for all x. (4) Using (2), xc = (xa)c = x(ac) = x(ab) = (xa)b = xb.

§ 2 Semi-group Extensions

Let A and B be disjoint semi-groups with the operations λ and μ respectively. We shall construct some sorts of semi-proups which include A and B as the sub-semi-groups keeping the operations invariant.

The set of all pairs (x, y) where $x \in A$ and $y \in B$ is called the direct product of A and B. Its operation ν is defined as $(x, y) \nu (x', y') = (x \lambda x', y \mu y')$. Then we have without difficulty

Theorem 5. The direct product $D(\nu)$ of semi-groups $A(\lambda)$ and $B(\mu)$ is a semi-group.

The union C of $A(\lambda)$ and $B(\mu)$ will become a semi-group, if we give such operations as seen in the below theorems, which are all proved by dint of Theorem 1. In the following theorems we don't mention that $A(\lambda)$ and $B(\mu)$ are semi-groups, $A(\lambda) \cap B(\mu) = 0$ and $C(\nu) = A(\lambda) \cup B(\mu)$.

Theorem 6. If ν is given as:

$$x \lor y = x \lambda y$$
 for $x, y \in A$
 $x \lor y = x \mu y$ for $x, y \in B$
 $x \lor y = y \lor x = y$ for $x \in A, y \in B$,

then C(v) is a semi-group.

Before the proof we explain the notaions. By $R_x^{\nu} = \left(R_x^{\lambda}, R_x^{\mu}\right)$ we mean the mapping R_x^{ν} of C into itself by which $R_x^{\nu}(z) = R_x^{\lambda}(z)$ for $z \in A$, $R_x^{\nu}(z) = R_x^{\mu}(z)$ for $z \in B$. Especially the invariant mapping is denoted by E, and the mapping of A or B into only an element p is denoted by Z_p . We often denote $R_x^{\lambda} L_y^{\lambda} = L_y^{\lambda} R_x^{\lambda}$ by $R_x^{\lambda} \approx L_y^{\lambda}$ for short.

Proof. Since $R_p^{\nu}=(R_p^{\lambda},E)$, $L_p^{\nu}=(L_p^{\lambda},E)$ for $p \in A$, and $R_q^{\nu}=\Big(Z_q,R_q^{\mu}\Big)$, $L_q^{\nu}=\Big(Z_q,L_q^{\mu}\Big)$ for $q \in B$, we have immediately

$$\begin{split} R_p^{\nu}L_q^{\nu} &= \left(R_p^{\lambda}, E\right) \left(Z_q, L_q^{\mu}\right) = \left(Z_q, L_q^{\mu}\right) = \left(Z_q, L_q^{\mu}\right) \left(R_p^{\lambda}, E\right) = L_q^{\nu}R_p^{\nu} \end{split}$$
 Similarly
$$R_q^{\nu}L_p^{\nu} &= \left(Z_q, R_q^{\mu}\right) = L_p^{\nu}R_q^{\nu} \quad , \quad R_p^{\nu}L_p^{\nu} = \left(R_p^{\lambda}L_p^{\lambda}, E\right) = L_p^{\nu}R_p^{\nu} \quad , \\ R_q^{\nu}L_q^{\nu} &= \left(Z_{q\mu q}, R_q^{\mu}L_q^{\mu}\right) = L_q^{\nu}R_q^{\nu} \quad . \end{split}$$

Theorem 7. Suppose that $A(\lambda)$ has a two-sided zero 0. If ν is defined as $x \nu y = x \lambda y$ for $x, y \in A$, $x \nu y = x \mu y$ for $x, y \in B$, $x \nu y = y \nu x = 0$ for $x \in A$, $y \in B$,

then C(v) is a semi-group.

Proof. Since $R_p^{\nu} = \left(R_p, Z_o\right)$, $L_p^{\nu} = \left(L_p^{\lambda}, Z_o\right)$ for $p \in A$, and $R_q^{\nu} = \left(Z_o, R_q^{\mu}\right)$, $L_q = \left(Z_o, L_q^{\mu}\right)$ for $q \in B$, we have

$$R_{p}^{\nu}L_{p}^{\nu} = \left(R_{p}^{\lambda}L_{p}^{\lambda}, Z_{o}\right) = L_{p}^{\nu}R_{p}^{\nu}, \qquad R_{p}^{\nu}L_{q}^{\nu}, = \left(Z_{o}, Z_{o}\right) = L_{q}^{\nu}R_{p}^{\nu},$$
 $R_{q}^{\nu}L_{p}^{\nu} = \left(Z_{o}, Z_{o}\right) = L_{p}^{\nu}R_{q}^{\nu}, \qquad R_{q}^{\nu}L_{q}^{\nu} = \left(Z_{o}, R_{q}^{\mu}L_{q}^{\mu}\right) = L_{q}^{\nu}R_{q}^{\nu}.$

Theorem 8 Let $A(\lambda)$ include a two-sided zero 0 and let $B(\mu)$ be defined as $x \mu y = x$. If $C(\nu)$ is given as:

 $x \lor y = x \lambda y$ for $x, y \in A$, $x \lor y = x \mu y$ for $x, y \in B$, $x \lor y = 0$ for $x \in A$, $y \in B$, $x \lor y = x$ for $x \in B$, $y \in A$, then $C(\lor)$ is a semi-group.

$$Proof. \quad R_p^{\mathsf{v}} = \left(R_p^{\mathsf{v}}, \; E\right), \quad L_p = \left(L_p^{\mathsf{v}}, \; Z_o\right), \quad R_q^{\mathsf{v}} = \left(Z_o, \; E\right), \quad L_q^{\mathsf{v}} = \left(Z_q, \; Z_q\right) \; \text{ for } \; p \in A, \; q \in B.$$

$$\text{Then} \qquad \qquad R_p^{\mathsf{v}} L_p^{\mathsf{v}} = \left(R_p^{\mathsf{v}} L_p^{\mathsf{v}}, \; Z_o\right) = L_p^{\mathsf{v}} R_p^{\mathsf{v}}, \quad R_p^{\mathsf{v}} L_q^{\mathsf{v}} = \left(Z_q, \; Z_q\right) = L_q^{\mathsf{v}} R_p^{\mathsf{v}}, \quad R_q^{\mathsf{v}} L_q^{\mathsf{v}} = \left(Z_q, \; Z_q\right) = L_q^{\mathsf{v}} R_q^{\mathsf{v}}.$$

Theorem 9 Let $A(\lambda)$ be defined as $x \lambda y = y$. If ν is given as: $x \nu y = r$ (fixed $\in A$) for $x \in A$, $y \in B$, $x \nu y = y$ for $x \in B$, $y \in A$, $x \nu y = x \lambda y$ for x, $y \in A$, $x \nu y = x \lambda y$ for x, $y \in A$, $x \nu y = x \mu y$ for x, $y \in B$, then $C(\nu)$ is a semi-group.

Proof. $R_p^{\nu} = (Z_p, Z_p), \quad L_p^{\nu} = (E, Z_r), \quad R_q^{\nu} = (Z_r, R_q^{\mu}), \quad L_q = (E, L_q^{\mu})$ for $p \in A$, $q \in B$.

3)
$$R_q^{\mu} = E$$
, $L_q^{\mu} = Z_q$ for $q \in B$. 4) $L_p^{\lambda} = E$, $R_p^{\lambda} = Z_p$ for $p \in A$.

Then
$$R_{p}^{\nu}L_{p}^{\nu} = (Z_{p}, Z_{p}) = L_{p}^{\nu}R_{p}^{\nu}$$
, $R_{p}^{\nu}L_{b}^{\nu} = (Z_{p}, Z_{p}) = L_{q}^{\nu}R_{p}^{\nu}$, $R_{q}^{\nu}L_{q}^{\nu} = (Z_{r}, Z_{q}) = L_{q}^{\nu}R_{q}^{\nu}$, $R_{q}^{\nu}L_{q}^{\nu} = (Z_{r}, R_{q}^{\mu}L_{q}^{\mu}) = L_{q}^{\nu}R_{q}^{\nu}$.

As the special cases we consider the one-adjoined extension i. e., the semi-group A^* obtained by adjoining only an idempotent s to a semi-group A.

Corollary Let $C(\nu) = A(\lambda) \cup \{s\}$ where $s \in A(\lambda)$. If ν is given as follows, $C(\nu)$ is a semi-group in each case of $(1) \sim (5)$.

- (1) $x \vee y = x \lambda y$ for $x, y \in A$, $x \vee s = s \vee x = x$ for $x \in A$, $s \vee s = s$.
- (2) $x \vee y = x \lambda y$ for $x, y \in A$, $x \vee s = s \vee x = s$ for $x \in A$, $s \vee s = s$.
- (3) $A(\lambda)$ has a two-sided zero 0. $x \vee y = x \lambda y$ for $x, y \in A$, $x \vee s = s \vee x = 0$ for $x \in A$, $s \vee s = s$
- (4) $A(\lambda)$ has a two-sided zero 0. $x \vee y = x \lambda y$ for $x, y \in A$, $x \vee s = 0$, $s \vee x = s$ for $x \in A$, $s \vee s = s$.
- (5) $A(\lambda)$ is defined as $x \lambda y = y$. $x \nu y = x \lambda y$ for $x, y \in A$, $x \nu s = p$ (fixed $\in A$) for $x \in A$, $s \nu x = x$ for $x \in A$, $s \nu s = s$.

Next, as to isomorphism between the same kind of one-adjoined extensions, we have

Theorem 10. Let C and C' be the same kind (1) or (2) of one-adjoined extensions of A and A' repectively. C is isomorphic with C' if and only if A is isomorphic with A'.

Proof. Suppose C is isomorphic with C'. Let a and a' be units or zeros of C and C' respectively. Then by the uniqueness of a unit or zero we see that a is mapped to a'. Accordingly A is isomorphic with A'. The converse is clear.

Now we compose non-universal⁵⁾ one-adjoined extension of a given semi-group. Let $B(\mu) = A(\lambda) \cup \{s\}$ where $A(\lambda)$ is a semi-group and $s \in A(\lambda)$.

Theorem 11. If μ is defined as:

$$x \mu y = x \lambda y$$
 for $x, y \in A$, $x \mu s = x \lambda t$, $s \mu x = t \lambda x$ for $x \in A$, $t(fiex_3d) \in A$, $s \mu s = t \lambda t$,

then $B(\mu)$ is a semi-group.

Proof.
$$R_p^{\mu} = \left(R_p^{\lambda}, t \lambda b\right)_{s}^{6} L_p^{\mu} = \left(L_p^{\lambda}, p \lambda t\right)$$
 for $p \in A$, and $R_s^{\mu} = \left(R_t^{\lambda}, t \lambda t\right) L_s^{\mu} = \left(L_t^{\lambda}, t \lambda t\right)$

From them we readily have $R_p^{\mu} \approx L_p^{\mu}$, $R_p^{\mu} \approx L_s^{\mu}$, $R_s^{\mu} \approx L_p^{\mu}$, $R_s^{\mu} \approx L_s^{\mu}$

The following theorem is worth notice.

⁵⁾ We mean by it that the one-adjoined extension $B'(\mu)$ is a non-universal. See [1] with respect to "universal."

⁶⁾ By $R_p^{\mu} = \left(R_p^{\lambda}, t \lambda p\right)$ we mean that $R_p^{\mu}(z) = R_p^{\lambda}(z)$ for $z \in A$, and $R_p^{\mu}(s) = t \lambda p$.

Theorem 12. If $A(\lambda)$ has a two-sided unit, the non-universal one-adjoined extensions are no other than ones above shown by Theorem 11.

Proof. Suppose that $B(\mu)$ be the non-universal one-adjoined extension of $A(\lambda)$. Let a be a two-sided unit of $A(\lambda)$, and let $s \mu a = p$, $a \mu s = q$, and $s \mu s = u$. Then $R_a^{\mu} = \left(E, p\right)$, $L_a^{\mu} = \left(E, q\right)$, moreover we set $R_s^{\mu} = \left(R_s', u\right)$, $L_s^{\mu} = \left(L_s', u\right)$. Since $R_a^{\mu} \approx L_a^{\mu}$ according to Theorem 1, we see that p = q. On the other hand it follows from (5) that $R_s^{\mu} R_p^{\mu} = R_a^{\mu}$, $L_s^{\mu} L_t^{\mu} = L_p^{\mu}$, concluding that $\left(R_s', u\right) = \left(R_p^{\lambda}, s \mu p\right)$, $\left(L_s', u\right) = \left(L_p^{\lambda}, p \mu s\right)$, consequently $R_s' = R_p^{\lambda}$, $L_s' = L_p^{\lambda}$ and $u = p \mu s = s \mu p$. We get at once $u = p \lambda p$. The proof has been completed.

§ 3 Addendum.

For the preparation of § 4, 5, a few theorems will be added.

Theorem 13. A finite semi-group has at least an idempotent (6).

Theorem 14. A finite semi-group S is a right (left) groupoid if and only if $L_x = S$ $(R_x = S)$ for every $x \in S$. Especially it is a group if and only if $R_x = S$ as well as $L_x = S$ for every $x \in S$.

Theorem 15. If the algebra S has an idempotent a and every $L_x(or R_x)$ is either E or Z_a for every $x \in S$, then S is a semi-group.

Proof of Theorem 15. We see that $R_{\alpha} = Z_{\alpha}$. Let us consider two cases:

- (1) $L_a = E$, (2) $L_a = Z_a$.
- (1) When $L_{\alpha}=E$, it follows that $L_{x}=E$ for every $x \in S$. This is out of the question (8).
- (2). When $L_a = Z_a$, we see that $R_x(a) = a$ for all $x \in S$ and $R_x \approx L_x$ for every $x \in S$. Hence S is a semi-group by Theorem 1.

In the next two paragraphs, we shall determine all types of semigroups, up to isomorphism, defined in $\{a, b\}$ and in $\{a, b, c\}$.

§ 4. Semi-groups of Order 2.

We can see easily that the following 5 operations $\lambda_1 \sim \lambda_4$ and μ defined in $\{a, b\}$ are all semi-groups.⁸⁾

⁷⁾ See [7].

⁸⁾ We denote, for example, the table $\begin{vmatrix} a & b \\ a & a & b \\ b & a & b \end{vmatrix}$ by $\begin{vmatrix} a & b \\ a & b \end{vmatrix}$

In fact, λ_1 , λ_4 and μ are semi-groups by Theorem 15, λ_2 by (3) of the Corollary, λ_3 by Theorem 14.

It can be proved, furthermore, that semi-groups of order 2 are nothing but these 5 types up to isomorphism. In order to prove this it is sufficient to discuss the following 3 types among all algebras which are possible to be given in $\{a, b\}$.

Though ν_1 is isomorphic to λ_2 , ν_2 is not a semi-group, neither ν_3 , because $R_{\iota} \not= L_b$. Let us now study the ordering in the universal semi-group system. By Theorem 2, we see $\lambda_2 \not\equiv \lambda_3$; and $\lambda_1 \not\gtrsim \lambda_2$, $\lambda_1 \not\gtrsim \lambda_3$ dually $\lambda_4 \not\lessapprox \lambda_2$, $\lambda_4 \not\lessapprox \lambda_3$.

The diagram of the universal semi-group system of order 2 is as follows:

where λ_1 is a right groupoid, λ_4 a left groupoid, λ_3 a group, λ_2 a semi-lattice.

§ 5. Semi-groups of order 3.

1. Non-universal Semi-groups.

Without loss of generality, it may be assumed that c does not belong to the value range⁹⁾ of $S = \{a, b, c\}$, and $\{a, b\}$ is a sub-semi-group of S; and so all the types of semi-groups $\{a, b\}$ are as follows up to isomorphism or anti-isomorphism.

Now, we shall discuss $(1) \sim (4)$ successively.

⁹⁾ By the value range A^* of the subset A we mean the set composed of elements z=xy for $x, y \in A$.

(1) ac = ca = a follows from $R_c \approx L_a$, $L_c \approx R_a$; bc = cb = a from $R_b \approx L_c$, $L_b \approx R_c$ (Theorem 1).

we have

$$\begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix}$$

$$\begin{bmatrix} a & a & a \\ a & a & a \\ a & a & b \end{bmatrix}$$

$$\mu_1$$

$$\mu_2$$

(2) From Theorem 1 and 4, at once ca=a, cb=b; and we get

$$\begin{bmatrix} a & b & a \\ a & b & a \\ a & b & a \end{bmatrix}$$

with which another is isomorphic.

The above μ_1 , μ_2 and μ_3 prove to be semi-groups directly from Theorem 1.

(3) (4) By Theorem 11 and 12, we have

$$\begin{bmatrix} a & a & a \\ a & b & a \\ a & a & a \end{bmatrix} \qquad \begin{bmatrix} a & a & a \\ a & b & b \\ a & b & b \end{bmatrix} \qquad \begin{bmatrix} a & b & b \\ b & a & b \\ a & b & a \end{bmatrix} \qquad \begin{bmatrix} a & b & b \\ b & a & a \\ b & a & a \end{bmatrix}$$

$$\mu_4 \qquad \mu_5 \qquad \mu_6 \qquad \mu_7$$

Moreover, adding

 μ_8

which is anti-isomorphic with μ_3 , we have obtained all non-universal semi-groups $\mu_1 \sim \mu_8$.

2 Universal Semi-groups.

Without loss of generality, R_a and L_a may be assumed only as follows:

Because it is necessary that $R_a \approx L_a$; and the others are isomorphic or antiisomorphic with one of the above by the mapping $\begin{pmatrix} a & b & c \\ \downarrow & \downarrow & \downarrow \\ a & c & b \end{pmatrix}$. Now, we denote by (b, c) the value range of the subset $\{b, c\}$. Successively the cases $(1) \sim (10)$ will

¹⁰⁾ By (a, b, a), for example, we mean the mapping $\begin{pmatrix} a & b & c \\ \downarrow & \downarrow & \downarrow \\ a & b & a \end{pmatrix}$.

be discussed.

(1) When $a \in (b, c)$, we have from (1) of Corollary and Theorem 10

When $a \in (b, c)$, we can suppose cb=a or cc=a, to which others are mapped.

If cb=a, then by Theorem 3, we get (group)

 $\begin{array}{cccc}
a & b & c \\
b & c & a \\
c & a & b
\end{array}$

If cc = a, we see that cb = bc = b by Theorem 3, and bb = b from $R_c \approx L_b$ (Theorem 1).

$$\begin{array}{c|cccc}
a & b & c \\
b & b & b \\
c & b & a
\end{array}$$

(2) By Theorem 1 and 3, $a \in (b, c)$; considering (4) of Theorem 4 and $R_b \subset R_a$ we have

$$\begin{array}{c|c}
a & b & c \\
b & b & b \\
b & b & b
\end{array}$$

$$\begin{array}{c|c}
a & b & c \\
b & b & c \\
b & b & c
\end{array}$$

$$\lambda_9$$

(3) By (4) of Theorem 4, $L_c=(a, b, c)$; we get bc=b from $R_a\approx L_b$ and bb=b from $R_c\approx L_b$, $R_b\subset R_a$.

$$\begin{bmatrix} a & b & c \\ b & b & b \\ a & b & c \end{bmatrix}$$

(4) See the proof of Theorem 15

$$\begin{bmatrix} a & b & c \\ a & b & c \\ a & b & c \end{bmatrix}$$

$$\lambda_{11}$$

- (5) & (6) By (3) of Theorem 4, it holds $L_b=(b, b, b)$; and so either b or c is a right-unit. Hence we have semi-groups each of which is isomorphic with one belonging to $(1)\sim(4)$.
- (7) From Theorem 3 follows that neither R_b nor L_b contains c; hence cc=c. On the other hand, $b \in R_c$, $b \in L_c$, that is, bc=cb=b, showing that c is a unit. Therefore this case is reduced to the previous one.
- (8) Similarly cc=c. From this it concludes that bc=cb=b, because we require $R_a \approx L_c$, $R_c \approx L_a$. If bb=a, then $R_a \neq L_b$. Hence bb=b; we have

$$\begin{array}{cccc}
a & b & b \\
b & b & b \\
b & b & c
\end{array}$$

$$\lambda_{12}$$

(9) Let us investigate the case that a semi-group has no idempotent but a and the value range (b, c) contains a. For, if $a \in (b, c)$, then we have from (2) of Corollary and Theorem 10

whereas λ'_{10} is isomorphic with λ_{10} , λ'_{3} with λ_{3} , λ'_{7} with λ_{7} ; and λ_{13} is anti-isomorphic with λ_{10} .

If one at least of b and c is idempotent, then the semi-group is isomorphic with one of $(1)\sim(8)$. Now we take up only the following cases, which are all out of our consideration.

- i) The element cb must be either b or c, but whatever cb is, $R_b = L_c$.
- ii) Either cb or bc must be c. Then $R_b = L_c$ or $L_l \neq R_c$.
- iii) By the assumption, cb=a or bz=a. However it follows that $R_b \not\approx L_c$ or $L_b \not\approx R_c$.
- 10) It follows from $L_a \approx R_b$ that cb = b, contradicting to $R_a \approx L_c$. Hence there is none with $L_a = (a, b, a)$, $R_a = (a, a, c)$.

In addition to $\lambda_1 \sim \lambda_{13}$, we have the remaining ones which are anti-isomorphic with the former.

$$\begin{vmatrix}
a & a & a \\
b & b & b \\
c & c & c
\end{vmatrix}$$

$$\begin{vmatrix}
a & b & b \\
b & b & b \\
c & b & b
\end{vmatrix}$$

$$\begin{vmatrix}
a & b & b \\
b & b & b \\
c & c & c
\end{vmatrix}$$

$$\lambda_{16}$$

We can easily see that $\lambda_1 \sim \lambda_{16}$ thus obtained are semi-groups which are not isomorphic each other.

3 The Ordering of the Universal Semi-group System

At first we define a term as following. If the system \Re of universal semi-group operations defined in a set S satisfies the conditions (1) and (2) as follows, \Re is called the normal represent system of universal semi-groups with respect to S.

- (1) For any λ , $\mu \in \Re(\lambda \neq \mu)$, one is not isomorphic with the other.
- (2) For any $\lambda \in \mathbb{N}$, \mathbb{N} contains ν which is identically anti-isomorphic with λ , that is, $\nu = \lambda^{\varrho}$ (10) where ϱ is an identical translation on S.

For example, we have as the normal represent system of universal semigroups:

$\begin{bmatrix} a & a & a \\ a & a & b \\ a & b & c \end{bmatrix}$	$ \begin{array}{c c} a & a & c \\ a & b & c \\ a & c & c \end{array} $	$\begin{bmatrix} a & a & a \\ a & b & b \\ a & b & c \end{bmatrix}$	$\begin{bmatrix} a & a & c \\ a & b & c \\ c & c & a \end{bmatrix}$	$\begin{bmatrix} a & a & a \\ a & b & c \\ c & c & c \end{bmatrix}$	$\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$	$ \begin{array}{c c} a & a & a \\ a & b & c \\ a & c & b \end{array} $	$\begin{bmatrix} a & a & a \\ a & a & a \\ a & b & c \end{bmatrix}$
$ \begin{array}{c} a \ b \ b \\ a \ b \ b \\ a \ b \ c \end{array} $	$\begin{bmatrix} a & a & a \\ a & b & c \\ a & b & c \end{bmatrix}$	$ \begin{array}{c c} a & b & c \\ a & b & c \\ a & b & c \end{array} $	$\begin{bmatrix} a & a & a \\ a & b & a \\ a & a & c \end{bmatrix}$	$\begin{bmatrix} a & a & a \\ a & b & b \\ a & c & c \end{bmatrix}$	$\begin{bmatrix} a & a & a \\ b & b & b \\ c & c & c \end{bmatrix}$	α α α α α α α α α α α α α α α α α α α	$\begin{bmatrix} a & a & a \\ b & b & b \\ b & b & c \end{bmatrix}$

where these λ_l are isomorphic with the previously written λ_l ,

The diagram of the system is obtained by Theorem 2 or (9).

As easily seen, this system forms a lattice, but the lattice depends on the represent system.

References.

[1] As to the definition of a principal ideal, see T. TAMURA, Characterization of groupoids and semilattices by ideals in a semigroup, Journal of Science of the Gakugei Faculty, Tokushi-

ma University. Vol. 1, (1950) p. 37.

- [2] T. TAMURA, On the system of semigroup operations defined in a set, Journal of the Gakugei Faculty, Tokushima University, (natural science) Vol. 2, (1952) pp. 2-3.
- [3] The paper [2] pp. 2-6.
- [4] The paper [2] p. 3.
- [5] The paper [2] p. 2
- [6] D. REES, On semi-groups, Proceedings of the Cambridge Philosophical Society, Vol. 36, pt. 4 (1940) § 1. 2.
- (7) The paper (1) pp. 38-39.
- (8) The paper (2) p. 4.
- [9] See [2].
- (10) The paper (2) p. 8.

The operation $\lambda \ell$ is defined as: $x \lambda \ell v = y \lambda x$.

Addendum.

It is regret that I can not refer to the papers by Clifford, Suschkewitsch, etc., for lack of literature in our university. I fear that some of our results may have been contained in a study by someone.