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On the System of Semigroub Operations

Defined in a Set.
By

Takayuki TAMURA

(Received Sept. 30, 1951)

§ 1. introdution.

The object of this paper is the semigroup cperation system N of a set L, 1i.e., the

)
aggregate of all possible semigroup operations A, g, --- defined in abstract set E. More strictly,
Definition 1. 9t is the sct of all X satisfying the below conditions :.
(1) To each pair of elements ¢ and ) ¢ F corresponds a unique element @1 ¢ E.
(2) A is associative : (@dd) Ac=al (bAc) for any a, b, ¢ ¢ E.

The equality of elements of Mt is defined as follows.

Definition 2. Two cperations A and , are said to de equal i.e A=, if xAy=xpy
for any x,y ¢ E.

In the present paper we shall discuss how the semigroup opertaion system is ordered, and
how we realize the ordering in the transformation semigroups, but there remain many problems
unsolved. In order to intrcduce some quasi.ordering into the system we will restrict ourselves to
the universal semigroup operation system 11 of E.

Definition 3. A semigroup operation A defined in £ is called univesal if for any
ce FE there exist g and p ¢ E such that g ib=c.
By the universal semigioup operation system 11 of [ is meant the set of all universal semi-

group operations defined in F.

§ 2. The Necessary and Sufficient
Condition of a Semigroup.

As the preliminaries we shall relate the necessary and sufficieat condition (1] that the
associative law is fulfilled by an plgebraic system E(}ki by which is meant an abstract set with
a binary operation A. If [ is a subset of the algebraic system E and @A b € F whenever
a and ) e F, we call F an algebraic subsystem of [E.  Although it is needless to say,

Lemma 1. An algebraic subsystem  F of a semigroup [FE is a subsemigroup of E.
Lemma 2. If a semigroup F is homomorphic or anti-homomo:phic on an algebiaic
system  E’, then [ is a semigroup.
1) we denote by E 4 the algebraic system E  with 7 when 7 need to be specially assigned,

but simply by E when there is no fear of contusion.



Definition 4. A single.valved mapping 7T of an abstract set M into itself is called
a transformation of M, ie , to any x ¢ M corresponds a unique element Twx ¢ M. Of
course we define equality of two transformations as
T=S if Tx=Sx foral xe M.
If the product R = TS of transformations T and S is given as Rx = S(T%) for
x € M, then the'set of all transformations of M obviously forms a semigroup (2], whence
the set is called the transformation semigroup T on M, and a subsemigroup of T is called
a transformation subsemigroup on M.
As the special transformation system, we define a realization system and a faithful realization
system as following,
Definition 5. ILet g be an element of the algebraic systen J with an operation A.
Then the transformation R, (a) given as Ri.(a)x=%xkia (for x¢e E) is called
the right A—realization of @ in [, the transformation Lx(a) given as Ly(@)x =aix
(for x ¢ E) is called the left ) —realization of @ in K.
Letting 9\ =[Ri(a)lac E], ¥ =[Lr(adlacE],
Na Cor L)) is called the right (left) N —realization system of E(\), affording little convenience
to our general discussion (3].
Definition 6. Let E()) be the extended algebraic system of E (1) , which is obtai-
ned by abjoining only one new element p to K (1) and defining the operation X in kK

as follows.

AAXNY=XNY if x,y¢FE,
PANXx=xND=x it  xe £
As easily shown, [F is a semigroup if and only if £ is a semigroup (4).
Definition 7. Let g ¢ E(A)CE(X). The right (left) A— realization of g in
E (X)) is called right (left) faithful A—realization of @, written Ry(a) (La(a)); and the
set of them i.e., Fa=[Rr(a) |ac E] or «@=[LIr(a)]acE] is called the right or
left faithful A —realization system of [E respectively, where @ & Ri(a) or a < Li(a)
is one.to-one.
Now we have the following theorems.
Theorem 1. An algebraic system E(AN) is a semigroup if and only if
RBr(a) Ra(D)=Rr(aAb) for every a,bce¢ E.
Theorem 1°. An algebraic system E(X) is a semigroup if and only if
LA (@) INb)=L\bla) for every a , b ¢ E.
Remark The formula shows that 5, (8\) is an algebraic system and E'(A) is isomor-

phic (anti-isomorphic) on % (Zy)-

3]



Proof of Theorem 1. Suppose that E (1) is a semigroup.

By the assumption of A and the definition of R, ,
{RCOR®)} 5= zi\cb){m <a>x} R (B (xAa)=(xrna) A b
=xMaib)=Rr(aib)x for x¢ E,

and {Ry () Ra (D)}p=Ra (0){Ra () 2} =Ru (B a=a i b=R. (a1 ).

In short, {EA (@) Rx (b)}x=§x (arb)x for any x ¢ .
Finally we have Er(a) BA(b)=Rx(a A b). eY)

Conversely suppose (1). It follows from (1) _that Sy is an algebraic subsystem of the
semigroup Ty and thet 9J, is isomorphic on E(A) under the mapping: R\ (x) © x .
Hence E()) is immediately concluded to be a semighoup by means of Lemma 1 and 2.

We can similarly prove Theorem 1. If the correspondence between FE (1) and its realiza-
tion system R, (L)) is one-to-one , R (L)) is isomorphic with the faithful realization system
Jia (22). Therefore we have.

Corollary 1. Assum that a « R.(a) is one-to-one. In order that E(1) is a
semigroup, it is necessary and sufficient that Rr(a@) R\ (b)=Rx(arb) for every
a, beE

Corollary 2. Assume that a < Ly(a) is one-to-one. In ordey that E(\)
is a semigroup, it is necessary and sufficient that Ly(a) Ly (b)=Lx(bAa) for

every a , b ¢ E.
§ 3. The Ordering in 1I.

Definition 8. If (a\b)uc=ar(bpuc) forany a , b, ¢ ¢ E, then we denote it
by AZ 4 orby xS 4

Theorem 2. Let A, u € M and pe W . If 2= p and p= v , then
A= .

Proof. Forany a,b and ¢ ¢ E,

cpe WL b=bpub")

~

(ai b)uc:{a ACH b")}yc

={(a/1b’),ub"}vc oAz w

=(@arb) pb’vce) e o= v)
- ai{b’y(b”vc)} Co 2= 0
_ al{(b'# b”)vc} o n = )

Il

al(bvc).

w



Morecver it always holds that A 2= A for every A € M. If we are confined to the uni-
versal semigroup operation system 11, the relation . is a quasi-ordering (5) in 1. Let us
identify A and ,, dencte A~,, when A2z, aswellas X< . Then 1 becomes a
partially ordereci set under the identification (67 .

Remark. The universality of , in Theorem 2 has an effect on the transitive law.
More precisely, if it were not for the universality, the law would not necessarily hold (7). Let
us take for example the finite set M (of three elements @, b, and ¢) in which the three

2)

semigroup operations )\, , and p are given as the below product tables show.

A /t v
[3%, ol ol p | % .|
,.J;{,a‘b.c‘ o @ | b | ¢ 4,,5_\«,(1‘_17_‘|c
aa‘(za la (z‘a;a‘[ 1 a a‘ala
blalsls| |bfalala jibraib’a
‘c a‘b‘[c! IL a%a‘a 'ciaia‘c

1° At first we must show that 2, ,, and p are all semigroup cperations. In fact,
respecting 4, it is evident; es far as A, , are concerned, we can prove them easily dy Theorem
1 or dy direct method (8.

2° A=

For, «x,v, and 2z symbolling one of @, b, and ¢,

(xAy) pnz=a, xAypz)=xla-a. Hence (% 2y) pz=x Ay nz).
3 nz v
For, (x py)vz=avz=a, xp(vvz)=a, Henee (X uMva=xpu(yva).

4°  On the other hand (93 A2 .
For, (bAc)vb=bvb=b, DA(cvb)=bla=a. Therefore (bAc)vb=xbi(cvb).
Now let us define «, § as following:
Xxay-y , xBy=x for every x, wve K,
where @, 8 1is essily shown to belong to 1. Then we have
Corollary 3. « == XA and 1 . [ Jjor every A€ M.
Proof. For any x, v, z ¢ E,
(xay)lz=v1iz, xa(viz)=y2z,

and (x Av)Bz=x2y, XN(yR2)=xky ;

2) u is not univeisal.



hence (xay)rz=xa(yiz), (xAy)Bz=xi(yB2).

Consequently we can assert that 11 s the above and below bounded tartially ordered

set under the mentioned adequate identification.

§ 4. The Problem of Ordering in

the Realization System.

As the validity of associative law with respect to one operation has been reduced to the

)
problem in the faithfull realization system (cf. § 2, Theorem 1, 17), so the comparability between

different operations defined in E will be considered as that betwesn different realization systems

of E.
Theorem 3. In order that A = , for A, , & I, it is necessary and sufficient that
(1) Ri(@Ru(b)=Rxr(apb) for every a and b ¢ E.
Proof. Suppose that X\ = ,. ¥ x<cEckE ,

{Ri(a) Ru )}~ Re (OU{RA (@) 5 | =Ru(B) (21 )
=(Arna) pb=xr(apb)=Rr(a nb)x ;
otherwise, {fh (@) R, (b)} p=R.(b) {I_E/\ (@) P}=Eu (b)a=a nb=R\(a nb)p,
after all {R\ (@) Ru (b)} *=Ra(a pb) x for any % ¢ E.

Therefore we get Ry (@) R.(b)=Rir(a pb).

Conversely if (1) holds, then we shall arrive at
Ri{(a18) uel=Rfa 1 (b pod}.
For every @,b, and ¢ ¢ E,

Ri{a 1 o)} =Ra@) RaCh pc) (by Tteorem 1)

~R@{R @R} Gy (1D )

I

{Ex (a) B (b)}_m (¢)  (by the associative law in ¥5)
=Ra(a1b)R.(c) (by Theorem 1)
~Ru{(a1t) el by (1) )

Since the correspondence F\(x)— x is one to one, we have

(aldb)puc=alr(buc).

3) Two operations % and p are said to be comparable if either 2= 4 or 2 <l p:

N . _ . ]
said to be incomparable if neither 7 = # nor 7 < pu, denoted 7 % .

2
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Thus the proof of this theorem has been completed.
Similarly we get

Theorem 3’. In order that 1 = 4 for A, e M, it is necessary and sufficient that

A Lu(a)Ir(b)=L.(b1a) for every @ and b e E.

we note that the above theorems need no assumption of universality and that they are the
extensions of Theorem 1 and 1, In order to establish Theorem 4 and 4° equivalent to Theo-
rem 3 and ¥, a few definitions have to be prepared.

Definition 9. The one-to-one correspondence R (a) < R.(a) between i, and i,
is called the natural correspondence between i, and §i,. The natural correspondence between
@\ and g, is also similarly defined,

Definition 10. Let A and B be twe subsets of a set and < be the system compeo-
sed of transformations ¢ of AYB into itself such that ¢ (A)C A and ¢ (B)C B. If
besides @ there is a one-to-one correspondence f between A and B, and if f is pre-
served by - transformations, i.e. A>a <f—> be B implies Ase(a) (j—r ¢ (b)eB, then the
correspondence f is said to be invarient by @,

Now it follows from Theorem 3 (3") that RFi(a)R.(b) (or L.la)[.{b)) is thought as
the image of F.{(a) (L.(a@)) under the transformation meaning multiplication of F./a) (Lula))
by Ru.'bj ¢ Ru(ILar(b) e &) in the right side,

We shall call it %, - transformations (Q,—transformations), which, of course, may also be
applied to  R.(a) (L.(a)).

Theorem 4. Let A, pe¢M. In order that 2= u, it is necessary and sufficient
that

(1 T C R,

(2)  the natural correspondence between %in and . is invariant by Ru-trans-
Sormations.

Proof. Let us suppose (1) and (2). It follows from (2) that the natural corresponden-
ce Ri(a) o Ru(a) implies Rr(a) Ru(b) & Ru(a) Ru(b) for every @ and beE. On
the other hand, there is an element ¢ ¢ E such that R (@) B. (b)=Fx(c) by (1); and
Theorem 1 shows R, (@) B, (0)=R. (a pb). Hence we have E.(¢) < Ru (@ 1 b) conclu-
ding c¢=a u b due to the definition of the natural correspondence. Thus we have arrived at
the formula of Theorem 3. Conversely (1) and (2) follow immediately from Theorem 3.

Similarly we have

Theorem 4'. [In order that A= p it is necessary and sufficient that

(1) @ C &,



(2)  the natural correspondence between Q\ and R, is invariant by - trans-

. formations.

§ 5. Translations of Operations.

By a translation on M we mean a one-to-one transformation of M onto itself. The set
of all translations of M forms a group, which is called the translation group on M, and a
subgroup of which is called a translation subgroup on M. Let us denote by & a translation
subgroup on initially given £, and individual translation by . L, b, --etc. Then correspo_nding to
& the translation subgroup & will be defined.

Definition 11. We let a transformation & of It correspond to pe@ as follows :
A _E.> AE (for any AeM)
where the operation A% is defined as
a 3= b= (at A 2 for any @, be E.
Lemma 3. (a22b)2Ec=arED ).
Proof.

(aien) e ={ca Boxac {155 h et
a 2 (b A% ) ={a& A (b aE c)S}*"1= {at 2 CBE cs)}@_l.

Utilizing that A is associative, the given formula is proved.

L ®
Lemma 4. i =0hy.

Proof.
a A b= (ab AE BN =(gbt ) pEETIET —g 20E D for every a, be E.
Hence A8 = b8 for every A¢M.

It follows from Lemma 3 and 4 that the operation A% belongs to 9t and that any 3}
has A% as its inverse image under the transformation ¥. Thus I for pe@® has been asser-
ted to be a translation of 9t ; moreover I becomes, in f ct, a translation of 1. It is for
this reason that the following lemma shows.

Lemma 5. [f 1 is uuiversal, A% is uuiversal.

Proof. Given any ce E, we denote ¢% by ¢. Since 2 is universal, there exist ¢

and & such that ¢ —=q’ A 0. Letting a=a’¥", b=b%", we get c=q A% b; thus A% is universal.

Tf the set of all L for pe¢@® is denoted by &, we have

4) a* represents the image of a under the trapslation ¥ of E.

5) 753.5:(7;3)75, a@b:(ag)h,



Theorem 5.

® is anti-homomorphic on 8. Accordingly & forms a group.
phisms in an algebraic system. E
Lemma 6.

We call @ a principal tianslation subgroup on 9t (or U) to & What condition does

A=2% for i2eM
Theorem 6. &

& require in order that it is anti-isomorphic on &7 Let W (1) be the group of all automor-
with  A.
if and only if

is anti-isomorphic on
A €5

e AHANGS.
& if and only if
f\} A AG = {e}

(cf. (101)
Now we define a translation subgroup 3 other than . B shall be generated by the only
one translation p of I or I, where p maps any 2 to ¥ ' given as
XAy =y21x for x, ye E.
The subgroup generated by & and Pt
M (or W) to §.
Letting L =1)p =

b,
Corollary 4.

On the

iﬁ:é‘ =fﬁ>

is called the fundamental translation subgroup of
we immediately have
Corollary 5.

=1y =
E(1%).

K=

)
E ()

relations between transiations of operations and the initial set E.

Q

is isomorphic on E (A%),

and E (1)

is anti-isomotphic on
§ 6. Relations between the Ordering and

Translations of Operations.

Theorem 7.

lations and we shall refer to the relations between the ordering and classification by fundamental
translations uuder some additional condition.

In this peragraph the comparability of operations will be proved to be invariant by trans-

[f A Z JZ then i& :/; ﬂi’ e < /lé for any 1€ @ .
Proof. For any q, b, and ce E.
(@A) uf c=1Ca A3 b3t p VS =frar 2 68) 4 et
( {
= {ag A (0% u cg)}syl (-
={a3 A (b pE c)@1 e

Az )
h =a (b ufc).

Hence AE = LE.
(a 4 20) K¢ :{cs A(a i b)l"'}r1=-fc§ 2B )l
= {Cet 260 patf®”
6)

Ce Az w
{¢} s the set composed of only identity of .
7) We can prove easily that A" €11 if ZAell.

8



={(b ER as}g_i-—*a 1E (b AE 0. Hence A% < 2.

Definition 12. If there is a suitable y ¢ § such that A=,% then 2 and 4 are
said to be congruent, dencted 1= 4.

Since this binary relation = is obviously a equivalence relation, we can classify 9% by it
This classification is called the classification of 9 by @&, written Sﬁ/@, whose elements are
classes _J, @B,--- composed of operations. Here we call only 11/@ to account, into which a
quasi-ordering is introduced similarly as that in 1.

Definittion 13. Let _J, ® ¢ /8. We denote _jJ= @ if for any Ae _j there
exists one at least e ¢§ such that 2 Z 7

It is evident that the binary relation 4 > ¢} is a quasi-ordering in 11/@. By Definition
12 and Theorem 7 we readily obtain :

Theorem 8. Definition 13, the following (1), and (2) are all equivalent.

(1)  For any pe B there exists one at least A< _j such that A= p.

(2) There exist A3 4, pne PR such that A= p.

Now we are confined to the case that ¢ is ﬁnité.)

Theorem 9. If 1= p, then either A~y or A ZE p.

Proof. We suppose that 2 and p are comparable, say 1 = p. Since there exists
re® such thﬁt o = A% by Definition 12, it holds that 2 = A¥ (D; while, @ being ﬁnitegf
© is finite, whose order is n. Applying translations I, §% .., I successively to both sides
of () by means of Theorem 7, we have A > AT > 28> ... > 2¥"=1, following that A~p.

Theorem 10. [f there exist i¢ ] and uc P such that A 2;14(1) then &£
for any £¢ j and ne¢P. '

Proof. Suppose that there exist £¢ J and 753 @B such that & <55, Since p =g

i

for a suitable re®, we have A= u = £8 'Theorem 9 shows that A~gE, and so A < £§,
resulting in  A~py, which contradicts with the assumption that A 4 4.

Let J~B i J= B aswellas J< B

Theorem 11. I~ @ if and only if there exist £¢ _Jj and (e F such that
g~g.

Proof. Suppose that _jJ~ @. Then there exist A, ve _j and p, ne¢ B such that

Az p and py <. Having p=28 for some p and Af> 4f it holds that 4% < g,

8) The number of elements of & is finiite.
9) By Theorem &.
10) 23 ¢ symbols the fact that 2> % but A4 g.

9



while uf>> % by Theorem 9 ; hence A¥ << 4. Fimally AE~pE where, of course, AFe 7,

ute R. The converse is needless to say.

§ 7. Some Necessary Conditions

in Special Cases.

In this paragraph we shall atrange some necessary conditions which are fulfilled by a pair of
comparable operations under the special assumptions. If E with the operation A has a right
(left) identity e or right (left) zercl)l) n, then fof the sake of simplicity we shall say that the
operation A has a right (left) identity e or a right (left) zero # respectively, or say that
e or n is aright (left) identity or a right (left) zero of 1 respectively.

Ideals (11) Ll (a), I (a) for ae¢ E are defined as

L'(a&)=[xkalxcE], L"(@)=[alx]|xecE]

Theorem 12.

(1> If 2 has a right identity and A= p, then o< Ry and L) (@) c IV (@)

for eve every acE.

(LY If u has a left identity and 2= pu, then 8 c & aend L'(a) < Ll (a)

for every ac¢kE.

Proof of (])- By the assumption, there is such an element ¢ that g A e=a for every
aceE. Since A== u wehave aux=(ale)ux=arx(enux) for every % ¢ E. From
this we get Rp c Ra and L7 (@) c L7 (a).

Theorem 13.

(1) The element e is a right identity of X as well as a left identity of nu.
Then either A=pu or AZF u.

(11D The element e is a left identity of 1 as well as a right identity of u.
Then either A=p or Az p.

Proof. of (1). Suppose Az u, then xpy=—(xie)uy=%2i(epy)=x2y
for every ¥ and ye¢ E. Hence 1= pu.

Theorem 14. If the element e is the two-sided identity of both 1 and u,
then either A= p or AZEpu.

Proof. Suppose A= pu or A< pu, then we have x Ay =xpy for every x and
yeE; hence 1= pu

Theorem 15.

(1> If A= u then a right zero of p implies a right zero of 1.

11) By a right zero 7 of E is meant such an element 7 that x2n=n for all xekK.

10



(D) If Xz u then a left zero of N implies a left zero of pu.

Proof. of (1) Let n be aright zero of x. xAn=xA(Yypun)=(XAN pn=n.

Theorem 16.

(1D If 2z p and n is a right zero of A, then nuy for ve¢E is a right
zero of A.

(> If 2= u and n is a left zero of p, then xin for x¢ E is a left
zero of pu.

Proof of (1) Forevery xeE, x2(nuy)=@2n)puy="npy.

Theorem 17.

C1> If A= pu and n is the only right zero of XA, them n is a left zero
of pu-

() If A= p and n is tihe only left zero of u, them n is a right zero
of M.

Proof of (1) By Theorem 16 (), s puy for yeE is aright zero of A. From

the uniqueness of right zero follows # puy = n for every ye E.

Notes.

(13 The study of semigroups semigroups has been achieved by many mathematcians,
Arnold, Lorenzen, Clifford, Suschkewitch, etc., but I have not yet read their works. With res-
pect to the representation of semigroups, see

E. Hille : Functional analysis and semi-groups, 1946, p. 147.

(2] Let P, Q, R be transformations of a set M. By the definition of product,

{(POR}x=R{(PQ)%}=R{Q(Px)}, {PQR)}x=(QR)(Px)=R{Q(Px)}
and so {(PQ)R}%={P(QR))} x for every xc¢ M. Hence (PQ)R=P(QR).

(33 If E(\) is a semigroup,

{R\(a)R\(b) }x=Ry(b){R\ (@) x }=R\(b)(x A a)=(x A a)Ad
=xA(aib)=Ry.(aAb)x; therefore R)(a)Rr(b)=Rr(aNrb).
Similarly Ly (@) Ly (b)=Lr (b1 @); hence if E()\) is a semigroup, then R, aud £ are
algebraic subsystems of ¥, and consequntly semigroups. However this converse is not true unless,
the correspondence @ < Ry (a) is one-to-one.

(4] We suppose that E is a semigroup. Evidently (x X y)X 2=% X (¥ A 2) for «x,
ze E; by the definition of X, (P X )X y=p A Xy, AP Ay=xA(@PAry), and
(XN DP=xXNONPp) for %, ye E. Thus E is a semigroup. The converse is proved by

Lemma 1 and 2.

11



(5) (6) Birkoff : Latfice theory, 1948, p. 4.

(7] 'There are cases that the transitive law holds, even if no universality is assumed. For

example,
§ 7 ¢
la b la b la b
ala b e Uil PG where surely ¢ =9, n=¢ and £=¢.
bla b bla a blb b S0 s SEo5

(8] We can prove them not by Theorem 1, but directly by the product tables. In greater detail,

Takayuki Tamura: On the condition for semigroup (Japanese), Shikoku Sugaku Danwa,
No. 2, 1951.

( 91 Furtheremore we have A\ =5 v.

(10} In reality it holds that A (AE)=A(A) forany e @.

(11) Takayuki Tamura, Characterization of groupoids and semilattices by idealds in a semi-

group, Journal of Science of the Gakugei Faculty Tokushima University, Vol 1, 1950, p. 37.

August 1951, Gakugei Faculty,

Tokushima University.

Addendum to the paper ‘“ On a relation between local

convexity and entire convexity.’’ in this Journal, vol. 1.
In p. 25. vol. 1. I defined “convex point x of M, which is explained additionally as

following.

If there exists ¢ > 0 such that U (x; &)~ M, as far as nonnull, is con ex for any
positive & < 8, the point of the space 2 is called a convex point regarding M, or

M is said to be (locally) convex at x.
Furthermore 1 correct the errors in the same paper as below.

error correct
line 4, page 29, for any E>0 for a sufficiently small & > 0
last line page 29, for some v <0 for some ¢&;, v >0

12



Notes on General Analysis (1)
By
Isae Smimopa

(Received Sept. 30, 1951)

In these notes we shall first give another proofs of the radius of analyticity of the power series

which term by term differentiated and the Taylor expansion of the power series in the sphere of

analyticit

boundar ;

D . . . . . .
y, and then investigate in detail the state of the singular point of the power series on the

2)
of the sphere of analyticity. In the end of these papers, we shall extend the theorem of

Osgood of two complex variables to the case of functions whose domains lie in product spaces

of two complex Banach spaces using the classical methods.

Let

on E; be a homogeneous polynomial of degree n. Then the radius of amalyticity =

§ 1. Radius of analyticity of the power series,
E,;, E, and E; be complex-Banach-spaces and an E, valued function h, (x) defined

of the

power series 3, h, (x) is given by
n=0

We shall

1 _ sup Tim ¥[EGO] .
T llzl|=] n—ee

use following lemma for our purpose.

Lemma. Suppose that x and y are arbitrary points respectively on |x|<7T

and on

lyl=1. Let p be an arbitrary positive number such that p < T—|x|. Then

there exists a positive number o which is less than 1 and satisfies the following ine-

qualities

for |a]
Put

[ B (xtay) | <o”
Zp and n>n,(p, )%

n
h, (x4+a y)= > byuy,; (%,¥) a®. Then h, ;;(x,y) is a homogeneous polynomial of
=0

*)

2

This is called * The radius of absolute convergence of the power series” by E. Hille ; Func-
tional analysis and semigroups, 1948.

See, A.E. Taylor, (1) Analytic functions in general analysis, Annali della R. Scuola Normale
Superiore di Pisa, Seri. 11 Vol. vl (1937). (2) Additions to the theory of polynomials in
normed linear spaces (Tohoku M. J. 44, 1938). (3) On the properties of analytic functions
in abstract spaces; Math. Ann. 115, 1938.

1. Shimoda : (1) On power series In abstract spaces. Mathematica Japonicae, Vol. 1, No. 2.
The principal part of the proof of Theorem 2 is “Lemma” in this paper. (2) On the
behaviour of power series on the boundary of the sphere of analyticity in abstract spaces,
Proceeding of Japan A. Vol.'27 (1951), No. 2. or, Journal of Science of Gakugei Faculty,
Tokusima University, Vol. 1, 1950.
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degree n-i with respect to x and a homogeneous polynomial of degree i with respect to vy.
h,_;,; (x,¥) is the differential of h, (x) with increment y.
Theorem 1. The radius of analyticity of 3 huy, (%,y) with respect to %
n=1
and independent of y is T .

Proof. 'The radius of analyticity 7 of S,‘ Bn—11 (x,y) independent of y is clearly
IR

Ti=

‘;_, =sup sup Ilim Z¥h,_, (x,¥)].

v Ilxll=1 mn-oo

Now put y=|y|| - v, then

v _ sup  sup lim EY b, YD - Y]

T =1 Ixli=1 7noe

— s swp T YTEI BYIL

Uyrli=1 HXli=1 Mn—>oo
3
When x=y', h, ,, (x, x)=nh,(x). Therefore

Iy e— e L
1im ’(/||h,, )| = lim %—; lim \/||h,l,_],1 (x,x)|
N—>o00 >0 MN—>00

v

< sup  sup lim ¥[h, ., (x,7)|
Hpli=1 Ixl=] n-oo
1

and we have N e

That is, 7> 7’.

Let x and y be arbitrary points respectively in |x| < 7 and E;. Since there exists a posi-

3

tive number o’ such that 0 < p |y| < 7—|x|, we have

| hy GFay) | <on

for |a| £p° and n>n,, by lemma, where 0 < o < |. Thus we have, |h,,, (x,v)|

—

< —-¢o" for n>n,. This shows that Zm] h,_;,; (%,y) is absolutely convergent in |x| < T
n=1

=]

for an arbitrary fixed y and we see that ;z§1 by, (%,y) is analytic in ||x| < 7 .  That is,
T £ T’. Then we have 77 =-7". )

Corollary. Let h,_;; (X, ¥y, V4,...., y;) be the i-th derivative of h, (x) with increments
Y1> Y25 ....¥:. Then the radius of analyticity of nZ: Bpg,e (X, Y15 Vos. .. .» Vi) With respect to x
and independent of vy, y,,....,y; is 7. )

Theorem 2. Let x be an arbitrary point in ||%|| < ©. Then the radius of
analyticity of the Taylor expansion of HZ:) ha(x) at % 1is greater than or equal to

T —|% .

3) A. E. Taylor (2), Theorems 2. 3, 2. 5 and 2. 7.
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Proof. Let y be an arbitrary point on |y]=1, and p be an arbitrary positive number
such that p < 7—|x| .
Appealing to Lemma, we have
I by (x+ay) | <o
for |@|<£p and n>>n,, where 0 < o < 1. Then we have,

| hosy: (5, 7)) || < % G et e eaees €D
for |yl=1 and n>>n,. Now, put U, ()= Zm: hy s (x,y) with m=iit+1, . ... and
n=i

for an arbitrary y in complex Banach spaces. U, (y) is a homogeneous polynomial of degree

i satisfying the following inequalities

1 U =Ua ) = 5, Patos (5,9 |
=|y[*- H 2 h;z—i,t(X v ||, where v = ||§H

»r
Zlylt- 5 ii ", from (1),
n=g+1 0

,_/_(M)i ! o+l
“\p l—0a ’
for p>q>»>n,. This shows that the sequence {Um ( y)} is convergent on whole spaces, and we

see that lim U, (y)= Z h,_;,; (x,y) is a homogeneous polynomial of degree i with respect to

m—»oo
4) oo . C . . oo
y. Put b’y (yD= 2 b, ;,(%,y) and let 7’ be the radius of analyticity of the power series 3 h’; (y),
n=i =0

then we have

== sup 1im 4[R5

T lyll=1 i

Z sup lim:[/1 &t , from (1),

Hyli=] “i-roo il—
=z9 < RS
14 [
Thus we have 7’>>p. Since 7 —|/x|—p can be taken as small as we like, we have
T’ > 7—|x|. This completes the proof.

*%)
§ 2. Singular point of power series

The radius of analyticity ¢ of the power series Z} h, (x) is given by following equation
n=0
5)

1 sup Tim '{/SUp Th. (O ,
T G EK nooeo

4) A. E. Taylor (2), Theorem 3.7.
5) See : (2) of 2).
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where G is an arbitrary compact set extracted from the set [x|=1 and K is composed of all
such compact sets. The sphere |x| < 7 is called the sphere of analyticity of i h, (x).
n=0
Theorem 3. Suppose that a compact set G exists on the boundary of the

sphere of analyticity of the power series f} ha (%), which satisfies the following equality
n=0 .

e Y D ) I T USRS )
ca

N—>oco X

Then we can find a sequence {x,,}, which converges to %, and satisfies the equation

sz % hn (%) =1, in G and at least a singular point of éo hy (%) on the set
M composed of x, €° (0L 0 <2m).

Proof. From the assumption (2), we have
for a sequence of positive number ¢&;, which tends to zero, where n; depends on §&; for

Since G is compact and h,;(x) is continuous on C, there exists x; in G which satisfies
| by (%) || =sup || By (x|l -
XeG
Since {x,} is a subset of G, we can select a subsequence of {Xz} which converges in G.

In order not to change notation, we shall suppose simply that the sequence {xi} itself converges

to x,, which is the element of G. Then, from the construction of {ni}, we have

tim J/[h, (x| =1, and x—>x,.
nj—roo

Put x; (1+&)=vy;, then y; converges to x,. From (3), we have

I hnt (YD 2 1 e s €))
If i b, (x) has not a singular point on M, which composed of x, e (0 <8 £ 27x), f} h, (x)
n=0 n=0

is analytic on M. 'Therefore, for an arbitrary positive number & and § (0«6 £2n),

there exists Ny, such that

PN
=
for || x—xo¢" || <&. By the covering theorem of Heine-Borel for a compact set, we can find
finite points x, €1, xq €2, | x,en such that | 3 h,(x) | N, for (x—x,€% | ZE,
n=0

where j=1,2,3, ..., m and N=max (Ny,Ny, ...., Ng,). Now we choose two positive

numbers p and §, such that || x—x,€% | <&, when |[x—x%,] <p(<&), |al=]|+0
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and suitable §; is chosen from §,, §,...., O, for a.

Then we have

Zw: h, (x)
! =0 N
”h"(x>”=”27if7+?d““‘(1+—a)" ........................... (5

l@l=[+3

for |X—X,| <p and n=1,?2,

Since y; converges to X,, (5) contradicts to (4). 'This shows that ij h, (x) has at least
n=0
a singular point on M. Here x is not necessarily a singular point of > h,(x), as a
n=0

following example shows. Put h, (X)=x"'y in the complex-2-dimensional spaces, then h, X)

is a homogeneous polynomial of degree n, where X=(x,y).: Then the radius of analyticity of

Zm] h,(x) is 1. Let G be a compact set on |[X|=1 composed of X,=(e!®,0) and

n=1

Xm=(~/1_Lei9,~/_T_ei9) with m=1,2,3, .. ...
m " m

1 3
2 itn—10 (L) 7

2381 ha OO 1=t | (1—57) e

NN
== (@)

1\
because (1—t)*~1 t takes its maximum at t=% in the interval 0.2t 1. Since <1wi> : (L)
= | h,(X,) ||, we have

1 B G0 = B CK) |

n—1

—_ 1
On the other hand, 1im ¥/|h,(X,) [ = lim (1—i) an (L)Z" =1, and moreover X,, conve-
N—>o0 N—>oo n

n
rges to  X;. Nevertheless, it is not X, but X;e % that is a singular point of nZ: h, (X).
Corollary. Suppose that a compact set G exists on |x|=1 such that
then we can find a sequence {xn}, which converges to x, in G and salisfies

Lim | hy (X)) = ir » and at least a singular point on the set composed of x, T €
N~>»o00 .

(0<0 <2r).

Theorem 4. [f a point x, which lies on the boundary of the sphere of

analiticity of i’ I (X)), satisfies the following equality  lim Y| k. (X) | =1,
0 n—>oo

n=

17



then there exists at least a singular point on the circle xe® (0<L6 £2x).

Proof. Since x is a compact set, sup | hy(X) | =] hy(X)| and {x} converges t0 x.
Therefore, Theorem 3 is applicable and we see that Theorem 4 is true.
Corollary, If a point x, which lies on | x| =1, satisfies the jfollowing

equality
im VT (X0 =L,
e T
then there exists at least a singular point on the circle x 7 e (0L <2x).

As well as the case of Theorem 3, x 7T is not necessarily a singular point, as we can

easily find an opposite example in the power series of complex numbers.

§ 3. Analytic functions of two variables

Lemma. Let ( i rjxf\}- be a sequence of fz;(zcz‘z'ons on E; to E., each being
analytic in a domain D, and convergenl to f(X) in D. If on each compact set G
extracted from D the members of the sequence possess a commom bound M, f(x) is
analytic in D.

Proof. Let x, beany point in D, then there exists a pair of positive numbers o, M,

for which | f,(x)|«M (n=1,2,. ...), when |x—x,]<p in D. If not so, there exists

a subsequence —{fm (x) } of -{fn (x’)} and a sequence {Xm}' , which tends to x,, such that
|| fm (Xm) || >>m. On the other hand, since '{Xm} is a compact set, f,(x) must be bounded
on {x,r} in contradiction to | fn () | >m. Then f(x) is analytic in || x—x, | < p
by the thorem of A.E. Taylor.ﬁ ’ Therefore f (x) is analytic in D.

Theorem 5. A function [f(x,y) defined in a domain D of E, x E, with
values of E, is analytic in D if the following conditions are satisfied, 1) jf(x,v) is
analytic with respect to %,y separately in D, 2) let G be any compact sel extrac-
ted from D, then there exists a positive number Ms such that | f(x, )| £ Mg

on G.

Proof. Let (x,,v,) beany point of D. We can choose two positive numbers R, S

such that a domain | x—x¢ || <R, [vy—y,| <S is contained in D. Then it suffices to show

6) A. E. Taylor (3), loc. cit. page 409. Theorem 15. Let {fn (x)} be a sequence of functions
on Ei to Eu, each anmalytic in a domain D of Ei, and convergent to a limit f (x) in D. If in
each region interior to D the members of the sequence possess a common bound, f (x) is

analytic in D.

18



that f(x,y) is enalytic in a domain || x—x,| <R, |v—7¥,]| <S. Without losing generality,
we may assume that (x,,y,)=(0,0). If x is an arbitrary fixed point of x| <R, f(x,y)
is an analytic function of y in [y] < S. Therefore we have

flx,9)= TLZ; Un (%70,
where U, (x,y) is a homogeneous polynomial of degree n with respect to v. Obviously
U, (x, v)=1(x, 0), which is analytic with respect to x. If y is an arbitrarv fixed point of

Iy < S, there exists a positive number p such that o |y| <S. Then we have
: f
U, (X,Y)=’2—1 .f__*(X,?CYD da,
i a’

the integral being taken in the positive sense on the circle |a|=p. Now we define

o 1 (m;f 3 ' . B h
S (x)= 57 130 _C‘%giyigg,.ﬂ_g,)} for m=1,2, . ., where £, &, ..., &Em Eme1(—&))

lie on the circle la|=p, and each #; lies on the arc & &.,, and max |&r41—&;| tends

| Licm

to zero when m tends to infinity. Then

(1), S,(x) is analytic in [ <R,

x|
(2). if x is an arbitrary fixed point of x| <R, lim S, (x)=U,(x,v),
(3). let G, be any compact set extracted from the sp}llyz;e x| <R, and T be a set of
ay, where [a =p, G=(G,,T) is a compact set in D. By the hypothesis 27 there exists

a positive number Mg such that || f(x, ay) | £Ms, for (x,ay) on G. Therefore
. M
18 (x)] <=5
0
Thus the lemmer is applicable, and we sce that U, (x,y) is analytic with respect to x. On the

7
other hand, U, (x,v) is linear with respect to y, and we see by the theorem of Kerner that

U, (x,y) is continuous in (lx| <R, E/). Generally Un(x,y‘)znl![ﬁ'lf(:x;yl,Yz,‘...,Yn):l,
where

0" £ (X3 V1, Vo oo s V)= (27,%)/ d;c:% (i;?_"""ff (x, erZf:'“--i—anYn) d ay,
each integral being taken in the positive sense on the circle [a;|=p for i=1,2, . ., n, where
o must satisfy |a, y; 4o +anye| <S when |a;l £p (i=1,2,. ..., n). Repeating the
process described in the proof of the continuity of U, (x,y), we see that §'f(x; ¥V, Vs ..., ¥n)
is continuous with respect to (X, ¥, Vs, ....,Yn). Now let G be any compact set extracted
from\([xf[ <R, |yl <8), and G,, G, be the projections of G into |x| <R and |y| <$S

respectively. Since G,, G, are clearly the compact sets in [x/| <R, [|y] <S respectively, it

follows that max [y|=s<S. Let C be a ciccle |a|=p (where [<p<%), CxG, is a
G2y

7) M. Kerger, Zur Theorie der impliziten funktional Operation, Studia Math. T. I (1931)
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compact set in [ly] <S and G’ =(G,, CxG,) is a ccmpact set in ([|x] <R, |y <S).
Then there exists a positive number My such that || f(x,7)|| < Mg’ when (x,y)¢G.

Obviously G is contained in G’, and this shows

S 1 rf(x,ay) Mg
U, (x5, 7)== | =207 da | £« =€
100 Gov) =l g [=58 d ) 2%
for n=1,2,3 ... ., when (x,y) ¢ G. Thus the function f(x,y)= i U, (x,y) converges
n=0

uniformly on G, and so f(x,y) is continuous in ( ||x|| <R, [y] <S). This completes the

proof,

Corollary. [If E,—valued function f(x,y) is analytic with respect to x,y
separately and bounded in the domain D of E, x E,, f(x,y) is analytic in D.

Remark. By using Theorem 5 and the theorem of B.-continuity of Zorns,) the gene-
ralized Hartogs’s theorem can be proved as in the classical methods. Let f(x,y) is analytic
with respect to each variables separately, then there exists an open set V, in which f(x,y) is
bounded, in an arbitrary neighbourhood U of any point (x,y) in the domain. Appealing to
Theorem 5, f(x,y) is analytic in V. Therefore f(x,y) is B-continuous and then f(x,y)

is analytic with respect to (x,y) by the Theorem of Zorn, because f(x,y) is G-differentiable.

**¥) A power series >, bhnm (x) is called analytic at a point x when there exists at least a
7.=0
neighbourhood V (x) of x, on which }) hn (x) is continuous strongly and G-differen-
%=0

tiable. A point x is called a singular point of 3} ha (x), when >} hn (x) is not analytic

n=y 7=0
at a point x.
8) Max A. Zorn : Characterization of Analytic Functions in Banach Spaces, Annals of Math.
(2) 46 (1945). In the paper, the generalized Hartogs's theorem was proved very elegantly by

Zorn.
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On the ®? Distribution
By

Yoshikatsu WATANABE

(Received Sept. 30, 1951)

As a criterion for testing the goodness of fit of frequency function etc., hitherto K. Pearson’s

X2 test was extensively applied. However, in the quantity
X2 = Zw,(my— Np,)?,

the weight being assumed to be w,=71/Np,, those data with less probabilities have unreasonably
more effect. On the contrary, the 2 test, originally due to R.v. Mises and H. Cramér and
improved by N, Smirnoffl)is quite free from this defect. Nevertheless its table seems not yet to
have been found. For this requirement, Y. Ueda constructed a table of 2, distribution, as his
graduation thesis at Waseda University, under the direction of the author, But it appears to be
rather desirable to prepare those of ,? distributions, # being the number of classes in any
statistics, say 5~25. In the present note, however, it is only theoretically developped how to obtain
the ¢, distribution parallel to Smirnoff’s 2 distribution, while the actual numerical compu-
tations as to @, are about going to be executed by few students in our institute, and some

results might be expected.

§ 1. Definitions. Let some random variable x be subject to the probability density

function f (x), and the cumulative distribution function
F»= [ fxan.
Let %, <%, = -+ < xy be the observed values of x in N experimental trials, and
S(x)=NSy (%)

denote the number of individuals which do not exceed a given value x, so that Sy(x)=S(x¥)/N

is an empirical accumlated probability, and increases in a stairway. Accordingly
0 (x)=NSy(x)—NF (%)

gives the deviation at x=% of the experimental value from the theoretical. Now we define
o= L [Tw 5@y di=N [T [Sy—F ) [ (1
N— )

where w (x) is the weight. Thus @? affords the degree of deviation, and the smaller it is, the

more precisely the assumed function represents the actual feature (R. v. Mises), Further N,

1) N. Smirnoff : Sur la distribution de w2, Comptes Rendus, 202 (1936), p. 449.
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Smirnoff adopted the following form :

o'=N [7 w(Fx)) [SN(x)—F(x)T F (%) dn, (2)
and in particular, taking the weight 2w (F (x))=1,

w'=N [~ [SN(x)——F (x)]zf(x) dx, Fx)=F (%)) (3)

The last form can be obtained by putting w (x)=f(x) in (1), and thus the weight being
directly propotional to the frequency f (%), it is more legitimate than X% in which the
weight is inversely proportional to f(x). Furthermore, while v. Mises’ original «® is subjected

to the selection of F (%), Smirnoff’s 2, as Stieltjes integral, is quite independent of it,

’

and therefore could be evenly applied for any distribution.

§ 2. The distribution function of % @ (w2). Smirnoff’'s @2 being independent of

the choice of F, we may after him assume the case of the uniform distribution in 0, 1>, so

that f(x)=0, F(x)=0, for x <0,
=i =x, for 0 =& < 1,
=0, =1, for x > 1.

Evidently the theoretical probability that an observed point falls in the partial interval

k—1 k
= x = " =1 2.,ceueen 4
- x= (=1, 2,-eesvs, 1) (4)
is pr=1/n, and the cumulative probability that x does not exceed I/n is I/n. Hence,

if my be the empirical number of points having fallen in the interval (4) in N trials, then

. .. M
Pearson’s weighted deviation becomes

o)/ 3 = (e 20)

n—1
where k=1, 2,-..--. , n—1, and #,=— > £,

y=1
If N be sufficiently great, and 2 tolerably large, say #=20, the integral (2) may be

approximated by summation concerning # intervals (4) as follows ;

O n= ]ng())[%ﬂ 7lz _1711\721 <72) kZ(mk__%’)]ﬂ

OISR A O

n b=1 I_y \7

1) As we have remarked before, Pearson’s weight is inadequate, yet we may utilize it merely for the

sake of convenient transformation.
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where g=Max (4, k). That is

. n—1 1 7= !
DOy, n= Z a_}k t; tx, where Qjr=0Arj; = —2 w (;;)
—,]

Specially for w=1, we have g =ai;= %, and therefore
n

n—1

ha= 5 L8 4 b= 3 an t; ti=A (4, D). 1)
=1 N

Thus our @? is reduced to a positive definite Hermite form.
Now we require to find the c. d. f. @y,, (@?), or its p.d. f. ¢ (w?). For this purpose,

we shall begin to determine its ‘characteristic

'\,!fN n(é) = Z (7711, """ ;"ln) exp{z'g A (t> t)}, 2=,\/t1—’ ( 8)

"+ +”n
where p denotes the probability that the respective number of points falling in the %.th subin.
terval becomes 1 (k=1 ).

When N—->co, as is well known in X2- distribution, the expression (8) shall tend to the
limit -

lzm Vv n (ED=ra( )= :;;l

_ lf"" ...... [Tl Lxevie A t)}a’ty--dtn_l, (9)

n n—1
where Xt= 3 17= 5 bt (=% k) =23 bt 55 ¢ b
k=1 k=1

Hence the exponent in (9) becomes on writing A=2{¢ and using (7)

Q=— [nj (2~ aw) G+ Z (I=Nap) t; tk] (105

which is no longer Hermitian, yet could be transformed into the standard form :

1 ==t
Q_ _7 Z Ak 7\’ (11)
k=1
where ’s are the roots of the characteristic.equation (12) below, and their real parts are all
W
positive.
Z—X 01»1"‘/1 I—X Q1,9 vreereee I_A A1yn—1
dn (N, A) = =0, (12
I=N a1 2=Nagp—dAd oo 1—X @gn
1=\ @n1n I=Np1ye weeeeeees 2—N an-1n1—4
where ay =28 and g — max (j, k).
Vi

1) The detail is reported by the author in Shikoku Sugaku Shijo Danwa (Japanese,) No. 3, 1951.
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Substituting (11) in (9), the multiple integral decomposes into #—1 simple integrals, and

each of them becomes

o [T (3 At e = 1/ AE =1, 20, =),

T
Hence (9) may be written
"Ifn ($>= '\/”//11 Az """ Ay . (13)

Here the denominator being the product of all roots of the equation (12), it is nothing but the

absolute term :; namely

—n_l _n—z --------- —_— A
dn (2, 0) = | oA 17T |, (14)
-2 n—2 2
1-2223 2__712#3 ......... l_-ﬁ‘l‘
A A A
1_? 1— ol 2 o

the expansion of which yields

A"(i; 0> =D,(\) =1~ %(1_%)+£<1—-L‘>(1—i)

2 51 ne n?

— 1= =@ =)+ P [ (-5 &

y=1

Or putting A=mn*{, we obtain polynomial of degree %—1 in { :

(_1>71—1n Dn(l)=;§01(‘—1)l (Qn—ll—-l) gr-it= P, (E). (16)

Since the roots of the equation P, ,({)=0 are all real positive and different, we may arrange

them in ascending order

0<§1<§2< """ <Cn—~l)

and write P, ({)= T:Jl (=&,

The actual forms of the polynomials (16) for n=2, 3,-.--- are given in the following
Table [
| P (D=2 (D D (12) (20—3) [ o (D
2| peg2

3| Po=02—40+3=({—1)({—3)=X—1, where X=({—2)*
4 Py=(C—2)(—-2+4/2)(—2-42)
5| P=X?-3X+1, where X=({—2)
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11

12

== -2 E-3)(E—2+4/3)(—2—-43)

P,=X3-5 X?*46X—1, X=(f—2)%; the 3 roots of Py(X)=0 lie in {0, 1>, <1,2>
and (3, 4>.

Pr=(&—2) (&5~ 1275454 £4— 112 £3 4106 £2—40 £+4).
The roots (2) of P,=0 lie two in <0, 1>, one in {1,2> as well as {2.3>, and
two in {3, 4>

Py=(X—1)(X?—6 X?+9X—1), where X=(£—2)% so that besides X=1, the roots
lie in <0, 1>, ¢2,3> and <3,4>.

Py=(&—2)(¢¥—16 {"+104 £5—352 54661 £*—680 34356 £2—80 £+5).
Besides =2, there are three roots in {0, 1> as well as (3,4>, and one root in {1, 2>
as well as (2,3>

Py=X"-9 X*428 X3—35 X?+15 X—1, X=({—2)
The roots X lie in <0, 14>, <%, 1>, <1,2>, <2,3> and 3,4>.

P=(E—1) (&—2) (£—3)f (&), where f (&) =8 —16¢7 4 103 £6— 340 £° + 607 &*
—568 34251 ¢2—44 {42
The number of variations in signs of Sturm functions of f at ¢=0,1,2,3,4 is
8,5,4,3,0 respectively, so tl;xat P,;=0 has just eleven positive roots.

, and so on.

Ya(E)=

From all the foregoing we obtain the required characteristic

1 =D n, 7
Ancx 05 VDuh) N Pi® an

where A=27&=n*{. Correspondingly we get the probability density function, in view of (7)

®

¢ (o= 5 [T (—i§ ) Yale) dé= o

and (9),

fwt 6XP< —am) .

~ —Da(\)

-—Wi

nz
n% i CXP (—76072: E)
= - ag. 18
i J, Ve e

In the last integral the path of integration is the whole imaginary axis in the ¢-plane. But,

since the integrand is analytic in ¢, and moreover the integral taken along the right semi.circle

drawn in the plane with the origin as centre, tends to 0, as radius —>occ, so we may conceive

the path of integration in (18) as one contour, composed of the semi-circle together with the

imaginary axis. Denote it by C. Furthermore set several barriers along each segment joining
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successively, two by two, branch points &, &, .. ..., &y (besides, if n be even, the co-point

.
shall be taken as (¢,), and thus we obtain & & E; Cs....... Describe around them small
contours G (I=1,2, .. ... to n—1 or 2. according as m=odd or even). By Cauchy’s theorem,

2 2
the integral taken along C can be replaced by those taken along 3' C,, or what is the same

thing as taken twice along every segment {,_, ¢y with the sign a]t&nately changed In fact,
the sign of the squareroot in (18) should change after "\\

one complete revolution about every branch point £,
so that in contour (C; the integral taken along é‘zz——: Cau A

_—
is equal to that taken along ¢, £y, after one revolution

about ¢, , and thus the result shall be doubled. Of G Cin
0y 0 0

course, the infinitely small circle about ¢, contributes
Sa-1 Cu Guer Lyan

nothing. On the otherhand, if each half revolution about
£ and £y, be done, the sign changes, and accordingly
the integrals round (C, and (;,, must have the oppotite

sign.  From all these, we have

0 (oD=12 3 1y f‘“ ;(g_:%% d¢, (19

il

n;l or % according as #m=odd or even, and in the latter case we make ;=0

where p—=
Now integrating (19) with regards to 2 from % to oo, Wwe get

exp (_.i n* wi é‘) a¢

S endoi=1—0p=v7n [fa 1 2 (20)
\ oy NP ¢
®n 2k—1
For example, we have in case #=2 (cf Table I)
{— z=\/7 > exp(— 2wz§) __.3 e 4 o2 sec? .
@ (od) Tf e ﬂ[ exp(—4wjsec?0) d o
S 4 8 2
) ¢ (D=0 ()= ;f exp(—4 wfsec? §). sec? § d 0,
0
(€2))
@ (0= (0) ﬁf sec? § df—=oo,
T

0

and thus the frequency curve for (2 becomes J-shaped.
§ 8. The w2 distribution. Now we can pass into Smirnoff’s ? by making n—oo

in (15)-and (17) : thus
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LD _ A e B _sing/T

Lim Sr> S e e =D ;
B == g = YT
A,
Hence (o(m‘)———fwi eXp(~7w> az,
=t \/—sm«/a/«/a
& \ . 1 oot eXP(——;—wz /1) di
and f ¢ (o) d = Efﬁ mj_. (22)
s —e —sin 4/} A

Upon writing A=z? and expressing the infinite integral as contour-integrals in exactly the same

way as before, we get

2k exp (#%wz ZZ>

17w<w2>=f;§1<—1>k~1 dz. (23)

Gty N —zsinz

It may be noticed that the integrand of (23) becomes only integrably infinite at z=Inx

(I1=1,2, .....), and the same holds for its derivative :

2k eXp('_‘ % o? zz) 3

: 1 &
¢ (0)=— 2 (=) 7 z2*daz,
7T k=1 sy «/—Sin P
so that
N o (P 2t dz 3 — g
e (0)=—3 (—13 f Mf—n*f U5~ @t (20
= 4/—-slnz «/smyru =1
21—1yn
Since the last series is summable in Cesaro-Hglder’s sense, ¢ (0) surely exists. Hence the

frequency curve for ..? is usual bell-shaped (cf (21)).
For the purpose of numerical computations, the very form (23) is inconvenient. We may,

therefore, transform firstly

o fen (F5e53)

and secondly \/*sin 2 =,/sin (%#x) = [cos X = cos % t,

cos zdz = 7 co .gt sinzz?.tdt (—1=Zt<1)
Here, by means of the relation cos? % t=cos %, we can put the points of the intervals —1
<f=<1 and — % < x §7_2r‘ in one to one correspondence with each other, so that the

value z= ( 2k~%) m+% shall be determined uniquely when ¢ 1is assigned. 'Thus the integral
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(23) may be written as

1 2 42
=0 (=2 5 (—1) [ <exp<—7“" #) L dt
= -1 vz \/1 +cosz%t
—4 3 (—1) S [ rwat. (25)

To evaluate this. integral, we may utilize e.g. the so-called Gauss’ method of 5 selected

ordinates :

On calculating the value 3y = f(t, w,2 k) for every £, (v=1,2,3,4,5), we can readily

compute
oo 5
=0 (0®)=4 3 (—1D*"' 3 Ry (bv o k) -
k=1 v=1

For large values of ?, the convergence is quite rapid, in favour of the exponential factor with

negative index, and besides the series being alternate, the calculation might be stopped as the sum-
mand becomes small enough. The Table of ? distribution thus obtained by Y. Ueda, 1.c,,

is reprinted at the end of this note.
§ 4. Application. Supposing an empirical frequency distribution, divide the whole interval
a,b> into n equal subintervals (classes), and let the points of divisions be a=%¢ %1, ....,

%n=>b. If the empirically obtained number of individuals falling in (%, ¥ be mi, then
%
> me=S (x)=NSy(xx), k=12,......, N,
A=l

and S(x)=0 if x<a, while S&)=N if x>b.
Hence by definition (2) we have

1 n+1

D xk B
“’A=J_\7i§of [S(x)—NF(x)] dF, where %_ = —00, Xp4 =0,

Xt

which can be written

w2=NfaF(x')2dF+ %élka[S(x)—NF(x)]z dF+N [~ (1—F(x))*dF

=(1i)+ i)+ i),

Hee  (id=[ 5 NF@) [~ L NF@@=0(or=0)

o (iii):%[N(l _F(x))® ]f: — 5 N(1—F () »=0 (or =0,
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so that (ii) is only preponderant. However, since the values of S(x) are determined merely
at the points of divisions, we must be contented with approximation obtained by summation, E. g.

using the trapezoidal formula

s h 2

o= 3 [SO-NF@) [ F (), (26)

where h=(b—g)/n is the width of one subinterval. (Strictly speaking, the valués for end
subintervals shall be multiplied by 1/2, but as they are small, it is immaterial).

Example. The frequency distribution of stature for 1000 (which is a relative frequency,
the true number being 629779) males of aged 20 in Japan at a certain year is given in 'Table
- VUpon applying Pearson’s method of moments, the frequency distibution is fitted by the

normal curve :

_ _ 1
y=r ore

We have to test the goodness of fitting.

exp LM}, with g=160.285, o=5.8426.
1 2g%

Previously transform the variable into (¥—a)/o =%, and referring to the normal probability

table, find the values

F (4 =~/2L f:’“exp (—% #)at, F (tk)=«/1_ exp(~%tk2).

T Y 2

On, evaluating each summand in (26), as in Table ], we obtain

Table [

xx (em) K S(x) ty=Cxx—a)/o NF(t) (S—NF)®F’
135 0 0 —4.328 0.01 0.0000
140 1 1 —3.472 0.26 0.0005
145 5 6 —2.616 4.45 0.0313
150 32 38 —1.7603 39.17 0.1160
155 141 179 —0.9046 182.84 3.9024
160 300 479 —0.0488 480.55 0.9696
165 316 795 +0.8070 790.16 6.7480
170 158 953 1.6628 951.84 01347
175 40 993 2.519 994.11 0 0206
180 6 999 3.374 999.63 0.0005
185 1 1000 4.230 999.99 0.0000

N = 1000 total 11.9236
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wl— % x ‘150% X 119236 =0.0102.

From the annexed Table of 0 (0?), we find @ (0.0102)=0.0007, so that 1—@=0.9993>0.05.
Thus the ¢?—test docs not reject the hypothetical distribution.

For me, however, it seems somewhat improper to test the above by the @.> distribution.
If we could prepare a table of (,,2 distribution, probably the value of @ (w* = 0.0102) would
be > 0 (w.?=0.0102)=0.0007, as may be guessed from the fact that @' (w3=0)=o0, whereas
0" (wx?=0) is finite (cf (21} and (24)). —— Moreover, from @ (w?*)—Table, it appears seemingly
that @ (0)=0. At least, we can assert that @' (0) < 0.0001/0.01=0.01, because @ (0)=
[@(0.02)—2 @ (0.01)+® (0)]/0.012 > 0.

Table of @ (%) =fm‘§0 (0®)d ?

0

w® .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 @=0 .000t .0030 .0240 .0633 .1240 .1863.7 .2486 .3084 .3641 “
0.1 4154 4622 .5047 .5435 5787 .6107 .6397 .6662 .6904 7125
0.2 7338 7513 7684 7840 7984 8118 .8242 .8356 8461 .8559
0.3 .8650 8735 8813 .8887 .8955 9018 .9093 9133 9185 .9234
0.4 9279 9322 9361 9399 9434 9467 .9497 9526 9555 .9579
0.5 9603 9626 9647 9667 9686 9703 9720 9736 9751 9764
0.6 9777 - .9790 9801 9812 9823 9832 9842 9850 9858 9866
0.7 9875 .9880 .9887 9893 9899 9904 9910 9914 9919 9923
08 .9928 9931 9935 29939 9942 .9945 9948 9951 9953 9956

0.9 9958 9960 9962 9965 9966 9968 .9970 19971 9973 9974

ot ] 1.0 11 12 13 1.4 15 16 17 18 o

@l 9976 9985 9991 29995 .9997 19998 9999 9999  1.0000 1

Gakugei Faculty, Tokushima University.
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