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As a criterion for testing the goodness of fit of frequency function etc., hitherto K. Pearson’s

X2 test was extensively applied. However, in the quantity
X2 = Zw,(my— Np,)?,

the weight being assumed to be w,=71/Np,, those data with less probabilities have unreasonably
more effect. On the contrary, the 2 test, originally due to R.v. Mises and H. Cramér and
improved by N, Smirnoffl)is quite free from this defect. Nevertheless its table seems not yet to
have been found. For this requirement, Y. Ueda constructed a table of 2, distribution, as his
graduation thesis at Waseda University, under the direction of the author, But it appears to be
rather desirable to prepare those of ,? distributions, # being the number of classes in any
statistics, say 5~25. In the present note, however, it is only theoretically developped how to obtain
the ¢, distribution parallel to Smirnoff’s 2 distribution, while the actual numerical compu-
tations as to @, are about going to be executed by few students in our institute, and some

results might be expected.

§ 1. Definitions. Let some random variable x be subject to the probability density

function f (x), and the cumulative distribution function
F»= [ fxan.
Let %, <%, = -+ < xy be the observed values of x in N experimental trials, and
S(x)=NSy (%)

denote the number of individuals which do not exceed a given value x, so that Sy(x)=S(x¥)/N

is an empirical accumlated probability, and increases in a stairway. Accordingly
0 (x)=NSy(x)—NF (%)

gives the deviation at x=% of the experimental value from the theoretical. Now we define
o= L [Tw 5@y di=N [T [Sy—F ) [ (1
N— )

where w (x) is the weight. Thus @? affords the degree of deviation, and the smaller it is, the

more precisely the assumed function represents the actual feature (R. v. Mises), Further N,

1) N. Smirnoff : Sur la distribution de w2, Comptes Rendus, 202 (1936), p. 449.
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Smirnoff adopted the following form :

o'=N [7 w(Fx)) [SN(x)—F(x)T F (%) dn, (2)
and in particular, taking the weight 2w (F (x))=1,

w'=N [~ [SN(x)——F (x)]zf(x) dx, Fx)=F (%)) (3)

The last form can be obtained by putting w (x)=f(x) in (1), and thus the weight being
directly propotional to the frequency f (%), it is more legitimate than X% in which the
weight is inversely proportional to f(x). Furthermore, while v. Mises’ original «® is subjected

to the selection of F (%), Smirnoff’s 2, as Stieltjes integral, is quite independent of it,

’

and therefore could be evenly applied for any distribution.

§ 2. The distribution function of % @ (w2). Smirnoff’'s @2 being independent of

the choice of F, we may after him assume the case of the uniform distribution in 0, 1>, so

that f(x)=0, F(x)=0, for x <0,
=i =x, for 0 =& < 1,
=0, =1, for x > 1.

Evidently the theoretical probability that an observed point falls in the partial interval

k—1 k
= x = " =1 2.,ceueen 4
- x= (=1, 2,-eesvs, 1) (4)
is pr=1/n, and the cumulative probability that x does not exceed I/n is I/n. Hence,

if my be the empirical number of points having fallen in the interval (4) in N trials, then

. .. M
Pearson’s weighted deviation becomes

o)/ 3 = (e 20)

n—1
where k=1, 2,-..--. , n—1, and #,=— > £,

y=1
If N be sufficiently great, and 2 tolerably large, say #=20, the integral (2) may be

approximated by summation concerning # intervals (4) as follows ;

O n= ]ng())[%ﬂ 7lz _1711\721 <72) kZ(mk__%’)]ﬂ

OISR A O

n b=1 I_y \7

1) As we have remarked before, Pearson’s weight is inadequate, yet we may utilize it merely for the

sake of convenient transformation.
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where g=Max (4, k). That is

. n—1 1 7= !
DOy, n= Z a_}k t; tx, where Qjr=0Arj; = —2 w (;;)
—,]

Specially for w=1, we have g =ai;= %, and therefore
n

n—1

ha= 5 L8 4 b= 3 an t; ti=A (4, D). 1)
=1 N

Thus our @? is reduced to a positive definite Hermite form.
Now we require to find the c. d. f. @y,, (@?), or its p.d. f. ¢ (w?). For this purpose,

we shall begin to determine its ‘characteristic

'\,!fN n(é) = Z (7711, """ ;"ln) exp{z'g A (t> t)}, 2=,\/t1—’ ( 8)

"+ +”n
where p denotes the probability that the respective number of points falling in the %.th subin.
terval becomes 1 (k=1 ).

When N—->co, as is well known in X2- distribution, the expression (8) shall tend to the
limit -

lzm Vv n (ED=ra( )= :;;l

_ lf"" ...... [Tl Lxevie A t)}a’ty--dtn_l, (9)

n n—1
where Xt= 3 17= 5 bt (=% k) =23 bt 55 ¢ b
k=1 k=1

Hence the exponent in (9) becomes on writing A=2{¢ and using (7)

Q=— [nj (2~ aw) G+ Z (I=Nap) t; tk] (105

which is no longer Hermitian, yet could be transformed into the standard form :

1 ==t
Q_ _7 Z Ak 7\’ (11)
k=1
where ’s are the roots of the characteristic.equation (12) below, and their real parts are all
W
positive.
Z—X 01»1"‘/1 I—X Q1,9 vreereee I_A A1yn—1
dn (N, A) = =0, (12
I=N a1 2=Nagp—dAd oo 1—X @gn
1=\ @n1n I=Np1ye weeeeeees 2—N an-1n1—4
where ay =28 and g — max (j, k).
Vi

1) The detail is reported by the author in Shikoku Sugaku Shijo Danwa (Japanese,) No. 3, 1951.
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Substituting (11) in (9), the multiple integral decomposes into #—1 simple integrals, and

each of them becomes

o [T (3 At e = 1/ AE =1, 20, =),

T
Hence (9) may be written
"Ifn ($>= '\/”//11 Az """ Ay . (13)

Here the denominator being the product of all roots of the equation (12), it is nothing but the

absolute term :; namely

—n_l _n—z --------- —_— A
dn (2, 0) = | oA 17T |, (14)
-2 n—2 2
1-2223 2__712#3 ......... l_-ﬁ‘l‘
A A A
1_? 1— ol 2 o

the expansion of which yields

A"(i; 0> =D,(\) =1~ %(1_%)+£<1—-L‘>(1—i)

2 51 ne n?

— 1= =@ =)+ P [ (-5 &

y=1

Or putting A=mn*{, we obtain polynomial of degree %—1 in { :

(_1>71—1n Dn(l)=;§01(‘—1)l (Qn—ll—-l) gr-it= P, (E). (16)

Since the roots of the equation P, ,({)=0 are all real positive and different, we may arrange

them in ascending order

0<§1<§2< """ <Cn—~l)

and write P, ({)= T:Jl (=&,

The actual forms of the polynomials (16) for n=2, 3,-.--- are given in the following
Table [
| P (D=2 (D D (12) (20—3) [ o (D
2| peg2

3| Po=02—40+3=({—1)({—3)=X—1, where X=({—2)*
4 Py=(C—2)(—-2+4/2)(—2-42)
5| P=X?-3X+1, where X=({—2)
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11

12

== -2 E-3)(E—2+4/3)(—2—-43)

P,=X3-5 X?*46X—1, X=(f—2)%; the 3 roots of Py(X)=0 lie in {0, 1>, <1,2>
and (3, 4>.

Pr=(&—2) (&5~ 1275454 £4— 112 £3 4106 £2—40 £+4).
The roots (2) of P,=0 lie two in <0, 1>, one in {1,2> as well as {2.3>, and
two in {3, 4>

Py=(X—1)(X?—6 X?+9X—1), where X=(£—2)% so that besides X=1, the roots
lie in <0, 1>, ¢2,3> and <3,4>.

Py=(&—2)(¢¥—16 {"+104 £5—352 54661 £*—680 34356 £2—80 £+5).
Besides =2, there are three roots in {0, 1> as well as (3,4>, and one root in {1, 2>
as well as (2,3>

Py=X"-9 X*428 X3—35 X?+15 X—1, X=({—2)
The roots X lie in <0, 14>, <%, 1>, <1,2>, <2,3> and 3,4>.

P=(E—1) (&—2) (£—3)f (&), where f (&) =8 —16¢7 4 103 £6— 340 £° + 607 &*
—568 34251 ¢2—44 {42
The number of variations in signs of Sturm functions of f at ¢=0,1,2,3,4 is
8,5,4,3,0 respectively, so tl;xat P,;=0 has just eleven positive roots.

, and so on.

Ya(E)=

From all the foregoing we obtain the required characteristic

1 =D n, 7
Ancx 05 VDuh) N Pi® an

where A=27&=n*{. Correspondingly we get the probability density function, in view of (7)

®

¢ (o= 5 [T (—i§ ) Yale) dé= o

and (9),

fwt 6XP< —am) .

~ —Da(\)

-—Wi

nz
n% i CXP (—76072: E)
= - ag. 18
i J, Ve e

In the last integral the path of integration is the whole imaginary axis in the ¢-plane. But,

since the integrand is analytic in ¢, and moreover the integral taken along the right semi.circle

drawn in the plane with the origin as centre, tends to 0, as radius —>occ, so we may conceive

the path of integration in (18) as one contour, composed of the semi-circle together with the

imaginary axis. Denote it by C. Furthermore set several barriers along each segment joining
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successively, two by two, branch points &, &, .. ..., &y (besides, if n be even, the co-point

.
shall be taken as (¢,), and thus we obtain & & E; Cs....... Describe around them small
contours G (I=1,2, .. ... to n—1 or 2. according as m=odd or even). By Cauchy’s theorem,

2 2
the integral taken along C can be replaced by those taken along 3' C,, or what is the same

thing as taken twice along every segment {,_, ¢y with the sign a]t&nately changed In fact,
the sign of the squareroot in (18) should change after "\\

one complete revolution about every branch point £,
so that in contour (C; the integral taken along é‘zz——: Cau A

_—
is equal to that taken along ¢, £y, after one revolution

about ¢, , and thus the result shall be doubled. Of G Cin
0y 0 0

course, the infinitely small circle about ¢, contributes
Sa-1 Cu Guer Lyan

nothing. On the otherhand, if each half revolution about
£ and £y, be done, the sign changes, and accordingly
the integrals round (C, and (;,, must have the oppotite

sign.  From all these, we have

0 (oD=12 3 1y f‘“ ;(g_:%% d¢, (19

il

n;l or % according as #m=odd or even, and in the latter case we make ;=0

where p—=
Now integrating (19) with regards to 2 from % to oo, Wwe get

exp (_.i n* wi é‘) a¢

S endoi=1—0p=v7n [fa 1 2 (20)
\ oy NP ¢
®n 2k—1
For example, we have in case #=2 (cf Table I)
{— z=\/7 > exp(— 2wz§) __.3 e 4 o2 sec? .
@ (od) Tf e ﬂ[ exp(—4wjsec?0) d o
S 4 8 2
) ¢ (D=0 ()= ;f exp(—4 wfsec? §). sec? § d 0,
0
(€2))
@ (0= (0) ﬁf sec? § df—=oo,
T

0

and thus the frequency curve for (2 becomes J-shaped.
§ 8. The w2 distribution. Now we can pass into Smirnoff’s ? by making n—oo

in (15)-and (17) : thus
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LD _ A e B _sing/T

Lim Sr> S e e =D ;
B == g = YT
A,
Hence (o(m‘)———fwi eXp(~7w> az,
=t \/—sm«/a/«/a
& \ . 1 oot eXP(——;—wz /1) di
and f ¢ (o) d = Efﬁ mj_. (22)
s —e —sin 4/} A

Upon writing A=z? and expressing the infinite integral as contour-integrals in exactly the same

way as before, we get

2k exp (#%wz ZZ>

17w<w2>=f;§1<—1>k~1 dz. (23)

Gty N —zsinz

It may be noticed that the integrand of (23) becomes only integrably infinite at z=Inx

(I1=1,2, .....), and the same holds for its derivative :

2k eXp('_‘ % o? zz) 3

: 1 &
¢ (0)=— 2 (=) 7 z2*daz,
7T k=1 sy «/—Sin P
so that
N o (P 2t dz 3 — g
e (0)=—3 (—13 f Mf—n*f U5~ @t (20
= 4/—-slnz «/smyru =1
21—1yn
Since the last series is summable in Cesaro-Hglder’s sense, ¢ (0) surely exists. Hence the

frequency curve for ..? is usual bell-shaped (cf (21)).
For the purpose of numerical computations, the very form (23) is inconvenient. We may,

therefore, transform firstly

o fen (F5e53)

and secondly \/*sin 2 =,/sin (%#x) = [cos X = cos % t,

cos zdz = 7 co .gt sinzz?.tdt (—1=Zt<1)
Here, by means of the relation cos? % t=cos %, we can put the points of the intervals —1
<f=<1 and — % < x §7_2r‘ in one to one correspondence with each other, so that the

value z= ( 2k~%) m+% shall be determined uniquely when ¢ 1is assigned. 'Thus the integral
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(23) may be written as

1 2 42
=0 (=2 5 (—1) [ <exp<—7“" #) L dt
= -1 vz \/1 +cosz%t
—4 3 (—1) S [ rwat. (25)

To evaluate this. integral, we may utilize e.g. the so-called Gauss’ method of 5 selected

ordinates :

On calculating the value 3y = f(t, w,2 k) for every £, (v=1,2,3,4,5), we can readily

compute
oo 5
=0 (0®)=4 3 (—1D*"' 3 Ry (bv o k) -
k=1 v=1

For large values of ?, the convergence is quite rapid, in favour of the exponential factor with

negative index, and besides the series being alternate, the calculation might be stopped as the sum-
mand becomes small enough. The Table of ? distribution thus obtained by Y. Ueda, 1.c,,

is reprinted at the end of this note.
§ 4. Application. Supposing an empirical frequency distribution, divide the whole interval
a,b> into n equal subintervals (classes), and let the points of divisions be a=%¢ %1, ....,

%n=>b. If the empirically obtained number of individuals falling in (%, ¥ be mi, then
%
> me=S (x)=NSy(xx), k=12,......, N,
A=l

and S(x)=0 if x<a, while S&)=N if x>b.
Hence by definition (2) we have

1 n+1

D xk B
“’A=J_\7i§of [S(x)—NF(x)] dF, where %_ = —00, Xp4 =0,

Xt

which can be written

w2=NfaF(x')2dF+ %élka[S(x)—NF(x)]z dF+N [~ (1—F(x))*dF

=(1i)+ i)+ i),

Hee  (id=[ 5 NF@) [~ L NF@@=0(or=0)

o (iii):%[N(l _F(x))® ]f: — 5 N(1—F () »=0 (or =0,
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so that (ii) is only preponderant. However, since the values of S(x) are determined merely
at the points of divisions, we must be contented with approximation obtained by summation, E. g.

using the trapezoidal formula

s h 2

o= 3 [SO-NF@) [ F (), (26)

where h=(b—g)/n is the width of one subinterval. (Strictly speaking, the valués for end
subintervals shall be multiplied by 1/2, but as they are small, it is immaterial).

Example. The frequency distribution of stature for 1000 (which is a relative frequency,
the true number being 629779) males of aged 20 in Japan at a certain year is given in 'Table
- VUpon applying Pearson’s method of moments, the frequency distibution is fitted by the

normal curve :

_ _ 1
y=r ore

We have to test the goodness of fitting.

exp LM}, with g=160.285, o=5.8426.
1 2g%

Previously transform the variable into (¥—a)/o =%, and referring to the normal probability

table, find the values

F (4 =~/2L f:’“exp (—% #)at, F (tk)=«/1_ exp(~%tk2).

T Y 2

On, evaluating each summand in (26), as in Table ], we obtain

Table [

xx (em) K S(x) ty=Cxx—a)/o NF(t) (S—NF)®F’
135 0 0 —4.328 0.01 0.0000
140 1 1 —3.472 0.26 0.0005
145 5 6 —2.616 4.45 0.0313
150 32 38 —1.7603 39.17 0.1160
155 141 179 —0.9046 182.84 3.9024
160 300 479 —0.0488 480.55 0.9696
165 316 795 +0.8070 790.16 6.7480
170 158 953 1.6628 951.84 01347
175 40 993 2.519 994.11 0 0206
180 6 999 3.374 999.63 0.0005
185 1 1000 4.230 999.99 0.0000

N = 1000 total 11.9236
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wl— % x ‘150% X 119236 =0.0102.

From the annexed Table of 0 (0?), we find @ (0.0102)=0.0007, so that 1—@=0.9993>0.05.
Thus the ¢?—test docs not reject the hypothetical distribution.

For me, however, it seems somewhat improper to test the above by the @.> distribution.
If we could prepare a table of (,,2 distribution, probably the value of @ (w* = 0.0102) would
be > 0 (w.?=0.0102)=0.0007, as may be guessed from the fact that @' (w3=0)=o0, whereas
0" (wx?=0) is finite (cf (21} and (24)). —— Moreover, from @ (w?*)—Table, it appears seemingly
that @ (0)=0. At least, we can assert that @' (0) < 0.0001/0.01=0.01, because @ (0)=
[@(0.02)—2 @ (0.01)+® (0)]/0.012 > 0.

Table of @ (%) =fm‘§0 (0®)d ?

0

w® .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 @=0 .000t .0030 .0240 .0633 .1240 .1863.7 .2486 .3084 .3641 “
0.1 4154 4622 .5047 .5435 5787 .6107 .6397 .6662 .6904 7125
0.2 7338 7513 7684 7840 7984 8118 .8242 .8356 8461 .8559
0.3 .8650 8735 8813 .8887 .8955 9018 .9093 9133 9185 .9234
0.4 9279 9322 9361 9399 9434 9467 .9497 9526 9555 .9579
0.5 9603 9626 9647 9667 9686 9703 9720 9736 9751 9764
0.6 9777 - .9790 9801 9812 9823 9832 9842 9850 9858 9866
0.7 9875 .9880 .9887 9893 9899 9904 9910 9914 9919 9923
08 .9928 9931 9935 29939 9942 .9945 9948 9951 9953 9956

0.9 9958 9960 9962 9965 9966 9968 .9970 19971 9973 9974

ot ] 1.0 11 12 13 1.4 15 16 17 18 o

@l 9976 9985 9991 29995 .9997 19998 9999 9999  1.0000 1

Gakugei Faculty, Tokushima University.
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