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In these notes we shall first give another proofs of the radius of analyticity of the power series

which term by term differentiated and the Taylor expansion of the power series in the sphere of

analyticit

boundar ;

D . . . . . .
y, and then investigate in detail the state of the singular point of the power series on the

2)
of the sphere of analyticity. In the end of these papers, we shall extend the theorem of

Osgood of two complex variables to the case of functions whose domains lie in product spaces

of two complex Banach spaces using the classical methods.

Let

on E; be a homogeneous polynomial of degree n. Then the radius of amalyticity =

§ 1. Radius of analyticity of the power series,
E,;, E, and E; be complex-Banach-spaces and an E, valued function h, (x) defined

of the

power series 3, h, (x) is given by
n=0

We shall

1 _ sup Tim ¥[EGO] .
T llzl|=] n—ee

use following lemma for our purpose.

Lemma. Suppose that x and y are arbitrary points respectively on |x|<7T

and on

lyl=1. Let p be an arbitrary positive number such that p < T—|x|. Then

there exists a positive number o which is less than 1 and satisfies the following ine-

qualities

for |a]
Put

[ B (xtay) | <o”
Zp and n>n,(p, )%

n
h, (x4+a y)= > byuy,; (%,¥) a®. Then h, ;;(x,y) is a homogeneous polynomial of
=0

*)

2

This is called * The radius of absolute convergence of the power series” by E. Hille ; Func-
tional analysis and semigroups, 1948.

See, A.E. Taylor, (1) Analytic functions in general analysis, Annali della R. Scuola Normale
Superiore di Pisa, Seri. 11 Vol. vl (1937). (2) Additions to the theory of polynomials in
normed linear spaces (Tohoku M. J. 44, 1938). (3) On the properties of analytic functions
in abstract spaces; Math. Ann. 115, 1938.

1. Shimoda : (1) On power series In abstract spaces. Mathematica Japonicae, Vol. 1, No. 2.
The principal part of the proof of Theorem 2 is “Lemma” in this paper. (2) On the
behaviour of power series on the boundary of the sphere of analyticity in abstract spaces,
Proceeding of Japan A. Vol.'27 (1951), No. 2. or, Journal of Science of Gakugei Faculty,
Tokusima University, Vol. 1, 1950.
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degree n-i with respect to x and a homogeneous polynomial of degree i with respect to vy.
h,_;,; (x,¥) is the differential of h, (x) with increment y.
Theorem 1. The radius of analyticity of 3 huy, (%,y) with respect to %
n=1
and independent of y is T .

Proof. 'The radius of analyticity 7 of S,‘ Bn—11 (x,y) independent of y is clearly
IR

Ti=

‘;_, =sup sup Ilim Z¥h,_, (x,¥)].

v Ilxll=1 mn-oo

Now put y=|y|| - v, then

v _ sup  sup lim EY b, YD - Y]

T =1 Ixli=1 7noe

— s swp T YTEI BYIL

Uyrli=1 HXli=1 Mn—>oo
3
When x=y', h, ,, (x, x)=nh,(x). Therefore

Iy e— e L
1im ’(/||h,, )| = lim %—; lim \/||h,l,_],1 (x,x)|
N—>o00 >0 MN—>00

v

< sup  sup lim ¥[h, ., (x,7)|
Hpli=1 Ixl=] n-oo
1

and we have N e

That is, 7> 7’.

Let x and y be arbitrary points respectively in |x| < 7 and E;. Since there exists a posi-

3

tive number o’ such that 0 < p |y| < 7—|x|, we have

| hy GFay) | <on

for |a| £p° and n>n,, by lemma, where 0 < o < |. Thus we have, |h,,, (x,v)|

—

< —-¢o" for n>n,. This shows that Zm] h,_;,; (%,y) is absolutely convergent in |x| < T
n=1

=]

for an arbitrary fixed y and we see that ;z§1 by, (%,y) is analytic in ||x| < 7 .  That is,
T £ T’. Then we have 77 =-7". )

Corollary. Let h,_;; (X, ¥y, V4,...., y;) be the i-th derivative of h, (x) with increments
Y1> Y25 ....¥:. Then the radius of analyticity of nZ: Bpg,e (X, Y15 Vos. .. .» Vi) With respect to x
and independent of vy, y,,....,y; is 7. )

Theorem 2. Let x be an arbitrary point in ||%|| < ©. Then the radius of
analyticity of the Taylor expansion of HZ:) ha(x) at % 1is greater than or equal to

T —|% .

3) A. E. Taylor (2), Theorems 2. 3, 2. 5 and 2. 7.
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Proof. Let y be an arbitrary point on |y]=1, and p be an arbitrary positive number
such that p < 7—|x| .
Appealing to Lemma, we have
I by (x+ay) | <o
for |@|<£p and n>>n,, where 0 < o < 1. Then we have,

| hosy: (5, 7)) || < % G et e eaees €D
for |yl=1 and n>>n,. Now, put U, ()= Zm: hy s (x,y) with m=iit+1, . ... and
n=i

for an arbitrary y in complex Banach spaces. U, (y) is a homogeneous polynomial of degree

i satisfying the following inequalities

1 U =Ua ) = 5, Patos (5,9 |
=|y[*- H 2 h;z—i,t(X v ||, where v = ||§H

»r
Zlylt- 5 ii ", from (1),
n=g+1 0

,_/_(M)i ! o+l
“\p l—0a ’
for p>q>»>n,. This shows that the sequence {Um ( y)} is convergent on whole spaces, and we

see that lim U, (y)= Z h,_;,; (x,y) is a homogeneous polynomial of degree i with respect to

m—»oo
4) oo . C . . oo
y. Put b’y (yD= 2 b, ;,(%,y) and let 7’ be the radius of analyticity of the power series 3 h’; (y),
n=i =0

then we have

== sup 1im 4[R5

T lyll=1 i

Z sup lim:[/1 &t , from (1),

Hyli=] “i-roo il—
=z9 < RS
14 [
Thus we have 7’>>p. Since 7 —|/x|—p can be taken as small as we like, we have
T’ > 7—|x|. This completes the proof.

*%)
§ 2. Singular point of power series

The radius of analyticity ¢ of the power series Z} h, (x) is given by following equation
n=0
5)

1 sup Tim '{/SUp Th. (O ,
T G EK nooeo

4) A. E. Taylor (2), Theorem 3.7.
5) See : (2) of 2).
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where G is an arbitrary compact set extracted from the set [x|=1 and K is composed of all
such compact sets. The sphere |x| < 7 is called the sphere of analyticity of i h, (x).
n=0
Theorem 3. Suppose that a compact set G exists on the boundary of the

sphere of analyticity of the power series f} ha (%), which satisfies the following equality
n=0 .

e Y D ) I T USRS )
ca

N—>oco X

Then we can find a sequence {x,,}, which converges to %, and satisfies the equation

sz % hn (%) =1, in G and at least a singular point of éo hy (%) on the set
M composed of x, €° (0L 0 <2m).

Proof. From the assumption (2), we have
for a sequence of positive number ¢&;, which tends to zero, where n; depends on §&; for

Since G is compact and h,;(x) is continuous on C, there exists x; in G which satisfies
| by (%) || =sup || By (x|l -
XeG
Since {x,} is a subset of G, we can select a subsequence of {Xz} which converges in G.

In order not to change notation, we shall suppose simply that the sequence {xi} itself converges

to x,, which is the element of G. Then, from the construction of {ni}, we have

tim J/[h, (x| =1, and x—>x,.
nj—roo

Put x; (1+&)=vy;, then y; converges to x,. From (3), we have

I hnt (YD 2 1 e s €))
If i b, (x) has not a singular point on M, which composed of x, e (0 <8 £ 27x), f} h, (x)
n=0 n=0

is analytic on M. 'Therefore, for an arbitrary positive number & and § (0«6 £2n),

there exists Ny, such that

PN
=
for || x—xo¢" || <&. By the covering theorem of Heine-Borel for a compact set, we can find
finite points x, €1, xq €2, | x,en such that | 3 h,(x) | N, for (x—x,€% | ZE,
n=0

where j=1,2,3, ..., m and N=max (Ny,Ny, ...., Ng,). Now we choose two positive

numbers p and §, such that || x—x,€% | <&, when |[x—x%,] <p(<&), |al=]|+0
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and suitable §; is chosen from §,, §,...., O, for a.

Then we have

Zw: h, (x)
! =0 N
”h"(x>”=”27if7+?d““‘(1+—a)" ........................... (5

l@l=[+3

for |X—X,| <p and n=1,?2,

Since y; converges to X,, (5) contradicts to (4). 'This shows that ij h, (x) has at least
n=0
a singular point on M. Here x is not necessarily a singular point of > h,(x), as a
n=0

following example shows. Put h, (X)=x"'y in the complex-2-dimensional spaces, then h, X)

is a homogeneous polynomial of degree n, where X=(x,y).: Then the radius of analyticity of

Zm] h,(x) is 1. Let G be a compact set on |[X|=1 composed of X,=(e!®,0) and

n=1

Xm=(~/1_Lei9,~/_T_ei9) with m=1,2,3, .. ...
m " m

1 3
2 itn—10 (L) 7

2381 ha OO 1=t | (1—57) e

NN
== (@)

1\
because (1—t)*~1 t takes its maximum at t=% in the interval 0.2t 1. Since <1wi> : (L)
= | h,(X,) ||, we have

1 B G0 = B CK) |

n—1

—_ 1
On the other hand, 1im ¥/|h,(X,) [ = lim (1—i) an (L)Z" =1, and moreover X,, conve-
N—>o0 N—>oo n

n
rges to  X;. Nevertheless, it is not X, but X;e % that is a singular point of nZ: h, (X).
Corollary. Suppose that a compact set G exists on |x|=1 such that
then we can find a sequence {xn}, which converges to x, in G and salisfies

Lim | hy (X)) = ir » and at least a singular point on the set composed of x, T €
N~>»o00 .

(0<0 <2r).

Theorem 4. [f a point x, which lies on the boundary of the sphere of

analiticity of i’ I (X)), satisfies the following equality  lim Y| k. (X) | =1,
0 n—>oo

n=
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then there exists at least a singular point on the circle xe® (0<L6 £2x).

Proof. Since x is a compact set, sup | hy(X) | =] hy(X)| and {x} converges t0 x.
Therefore, Theorem 3 is applicable and we see that Theorem 4 is true.
Corollary, If a point x, which lies on | x| =1, satisfies the jfollowing

equality
im VT (X0 =L,
e T
then there exists at least a singular point on the circle x 7 e (0L <2x).

As well as the case of Theorem 3, x 7T is not necessarily a singular point, as we can

easily find an opposite example in the power series of complex numbers.

§ 3. Analytic functions of two variables

Lemma. Let ( i rjxf\}- be a sequence of fz;(zcz‘z'ons on E; to E., each being
analytic in a domain D, and convergenl to f(X) in D. If on each compact set G
extracted from D the members of the sequence possess a commom bound M, f(x) is
analytic in D.

Proof. Let x, beany point in D, then there exists a pair of positive numbers o, M,

for which | f,(x)|«M (n=1,2,. ...), when |x—x,]<p in D. If not so, there exists

a subsequence —{fm (x) } of -{fn (x’)} and a sequence {Xm}' , which tends to x,, such that
|| fm (Xm) || >>m. On the other hand, since '{Xm} is a compact set, f,(x) must be bounded
on {x,r} in contradiction to | fn () | >m. Then f(x) is analytic in || x—x, | < p
by the thorem of A.E. Taylor.ﬁ ’ Therefore f (x) is analytic in D.

Theorem 5. A function [f(x,y) defined in a domain D of E, x E, with
values of E, is analytic in D if the following conditions are satisfied, 1) jf(x,v) is
analytic with respect to %,y separately in D, 2) let G be any compact sel extrac-
ted from D, then there exists a positive number Ms such that | f(x, )| £ Mg

on G.

Proof. Let (x,,v,) beany point of D. We can choose two positive numbers R, S

such that a domain | x—x¢ || <R, [vy—y,| <S is contained in D. Then it suffices to show

6) A. E. Taylor (3), loc. cit. page 409. Theorem 15. Let {fn (x)} be a sequence of functions
on Ei to Eu, each anmalytic in a domain D of Ei, and convergent to a limit f (x) in D. If in
each region interior to D the members of the sequence possess a common bound, f (x) is

analytic in D.
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that f(x,y) is enalytic in a domain || x—x,| <R, |v—7¥,]| <S. Without losing generality,
we may assume that (x,,y,)=(0,0). If x is an arbitrary fixed point of x| <R, f(x,y)
is an analytic function of y in [y] < S. Therefore we have

flx,9)= TLZ; Un (%70,
where U, (x,y) is a homogeneous polynomial of degree n with respect to v. Obviously
U, (x, v)=1(x, 0), which is analytic with respect to x. If y is an arbitrarv fixed point of

Iy < S, there exists a positive number p such that o |y| <S. Then we have
: f
U, (X,Y)=’2—1 .f__*(X,?CYD da,
i a’

the integral being taken in the positive sense on the circle |a|=p. Now we define

o 1 (m;f 3 ' . B h
S (x)= 57 130 _C‘%giyigg,.ﬂ_g,)} for m=1,2, . ., where £, &, ..., &Em Eme1(—&))

lie on the circle la|=p, and each #; lies on the arc & &.,, and max |&r41—&;| tends

| Licm

to zero when m tends to infinity. Then

(1), S,(x) is analytic in [ <R,

x|
(2). if x is an arbitrary fixed point of x| <R, lim S, (x)=U,(x,v),
(3). let G, be any compact set extracted from the sp}llyz;e x| <R, and T be a set of
ay, where [a =p, G=(G,,T) is a compact set in D. By the hypothesis 27 there exists

a positive number Mg such that || f(x, ay) | £Ms, for (x,ay) on G. Therefore
. M
18 (x)] <=5
0
Thus the lemmer is applicable, and we sce that U, (x,y) is analytic with respect to x. On the

7
other hand, U, (x,v) is linear with respect to y, and we see by the theorem of Kerner that

U, (x,y) is continuous in (lx| <R, E/). Generally Un(x,y‘)znl![ﬁ'lf(:x;yl,Yz,‘...,Yn):l,
where

0" £ (X3 V1, Vo oo s V)= (27,%)/ d;c:% (i;?_"""ff (x, erZf:'“--i—anYn) d ay,
each integral being taken in the positive sense on the circle [a;|=p for i=1,2, . ., n, where
o must satisfy |a, y; 4o +anye| <S when |a;l £p (i=1,2,. ..., n). Repeating the
process described in the proof of the continuity of U, (x,y), we see that §'f(x; ¥V, Vs ..., ¥n)
is continuous with respect to (X, ¥, Vs, ....,Yn). Now let G be any compact set extracted
from\([xf[ <R, |yl <8), and G,, G, be the projections of G into |x| <R and |y| <$S

respectively. Since G,, G, are clearly the compact sets in [x/| <R, [|y] <S respectively, it

follows that max [y|=s<S. Let C be a ciccle |a|=p (where [<p<%), CxG, is a
G2y

7) M. Kerger, Zur Theorie der impliziten funktional Operation, Studia Math. T. I (1931)
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compact set in [ly] <S and G’ =(G,, CxG,) is a ccmpact set in ([|x] <R, |y <S).
Then there exists a positive number My such that || f(x,7)|| < Mg’ when (x,y)¢G.

Obviously G is contained in G’, and this shows

S 1 rf(x,ay) Mg
U, (x5, 7)== | =207 da | £« =€
100 Gov) =l g [=58 d ) 2%
for n=1,2,3 ... ., when (x,y) ¢ G. Thus the function f(x,y)= i U, (x,y) converges
n=0

uniformly on G, and so f(x,y) is continuous in ( ||x|| <R, [y] <S). This completes the

proof,

Corollary. [If E,—valued function f(x,y) is analytic with respect to x,y
separately and bounded in the domain D of E, x E,, f(x,y) is analytic in D.

Remark. By using Theorem 5 and the theorem of B.-continuity of Zorns,) the gene-
ralized Hartogs’s theorem can be proved as in the classical methods. Let f(x,y) is analytic
with respect to each variables separately, then there exists an open set V, in which f(x,y) is
bounded, in an arbitrary neighbourhood U of any point (x,y) in the domain. Appealing to
Theorem 5, f(x,y) is analytic in V. Therefore f(x,y) is B-continuous and then f(x,y)

is analytic with respect to (x,y) by the Theorem of Zorn, because f(x,y) is G-differentiable.

**¥) A power series >, bhnm (x) is called analytic at a point x when there exists at least a
7.=0
neighbourhood V (x) of x, on which }) hn (x) is continuous strongly and G-differen-
%=0

tiable. A point x is called a singular point of 3} ha (x), when >} hn (x) is not analytic

n=y 7=0
at a point x.
8) Max A. Zorn : Characterization of Analytic Functions in Banach Spaces, Annals of Math.
(2) 46 (1945). In the paper, the generalized Hartogs's theorem was proved very elegantly by

Zorn.
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