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§ 1. introdution.

The object of this paper is the semigroup cperation system N of a set L, 1i.e., the

)
aggregate of all possible semigroup operations A, g, --- defined in abstract set E. More strictly,
Definition 1. 9t is the sct of all X satisfying the below conditions :.
(1) To each pair of elements ¢ and ) ¢ F corresponds a unique element @1 ¢ E.
(2) A is associative : (@dd) Ac=al (bAc) for any a, b, ¢ ¢ E.

The equality of elements of Mt is defined as follows.

Definition 2. Two cperations A and , are said to de equal i.e A=, if xAy=xpy
for any x,y ¢ E.

In the present paper we shall discuss how the semigroup opertaion system is ordered, and
how we realize the ordering in the transformation semigroups, but there remain many problems
unsolved. In order to intrcduce some quasi.ordering into the system we will restrict ourselves to
the universal semigroup operation system 11 of E.

Definition 3. A semigroup operation A defined in £ is called univesal if for any
ce FE there exist g and p ¢ E such that g ib=c.
By the universal semigioup operation system 11 of [ is meant the set of all universal semi-

group operations defined in F.

§ 2. The Necessary and Sufficient
Condition of a Semigroup.

As the preliminaries we shall relate the necessary and sufficieat condition (1] that the
associative law is fulfilled by an plgebraic system E(}ki by which is meant an abstract set with
a binary operation A. If [ is a subset of the algebraic system E and @A b € F whenever
a and ) e F, we call F an algebraic subsystem of [E.  Although it is needless to say,

Lemma 1. An algebraic subsystem  F of a semigroup [FE is a subsemigroup of E.
Lemma 2. If a semigroup F is homomorphic or anti-homomo:phic on an algebiaic
system  E’, then [ is a semigroup.
1) we denote by E 4 the algebraic system E  with 7 when 7 need to be specially assigned,

but simply by E when there is no fear of contusion.



Definition 4. A single.valved mapping 7T of an abstract set M into itself is called
a transformation of M, ie , to any x ¢ M corresponds a unique element Twx ¢ M. Of
course we define equality of two transformations as
T=S if Tx=Sx foral xe M.
If the product R = TS of transformations T and S is given as Rx = S(T%) for
x € M, then the'set of all transformations of M obviously forms a semigroup (2], whence
the set is called the transformation semigroup T on M, and a subsemigroup of T is called
a transformation subsemigroup on M.
As the special transformation system, we define a realization system and a faithful realization
system as following,
Definition 5. ILet g be an element of the algebraic systen J with an operation A.
Then the transformation R, (a) given as Ri.(a)x=%xkia (for x¢e E) is called
the right A—realization of @ in [, the transformation Lx(a) given as Ly(@)x =aix
(for x ¢ E) is called the left ) —realization of @ in K.
Letting 9\ =[Ri(a)lac E], ¥ =[Lr(adlacE],
Na Cor L)) is called the right (left) N —realization system of E(\), affording little convenience
to our general discussion (3].
Definition 6. Let E()) be the extended algebraic system of E (1) , which is obtai-
ned by abjoining only one new element p to K (1) and defining the operation X in kK

as follows.

AAXNY=XNY if x,y¢FE,
PANXx=xND=x it  xe £
As easily shown, [F is a semigroup if and only if £ is a semigroup (4).
Definition 7. Let g ¢ E(A)CE(X). The right (left) A— realization of g in
E (X)) is called right (left) faithful A—realization of @, written Ry(a) (La(a)); and the
set of them i.e., Fa=[Rr(a) |ac E] or «@=[LIr(a)]acE] is called the right or
left faithful A —realization system of [E respectively, where @ & Ri(a) or a < Li(a)
is one.to-one.
Now we have the following theorems.
Theorem 1. An algebraic system E(AN) is a semigroup if and only if
RBr(a) Ra(D)=Rr(aAb) for every a,bce¢ E.
Theorem 1°. An algebraic system E(X) is a semigroup if and only if
LA (@) INb)=L\bla) for every a , b ¢ E.
Remark The formula shows that 5, (8\) is an algebraic system and E'(A) is isomor-

phic (anti-isomorphic) on % (Zy)-
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Proof of Theorem 1. Suppose that E (1) is a semigroup.

By the assumption of A and the definition of R, ,
{RCOR®)} 5= zi\cb){m <a>x} R (B (xAa)=(xrna) A b
=xMaib)=Rr(aib)x for x¢ E,

and {Ry () Ra (D)}p=Ra (0){Ra () 2} =Ru (B a=a i b=R. (a1 ).

In short, {EA (@) Rx (b)}x=§x (arb)x for any x ¢ .
Finally we have Er(a) BA(b)=Rx(a A b). eY)

Conversely suppose (1). It follows from (1) _that Sy is an algebraic subsystem of the
semigroup Ty and thet 9J, is isomorphic on E(A) under the mapping: R\ (x) © x .
Hence E()) is immediately concluded to be a semighoup by means of Lemma 1 and 2.

We can similarly prove Theorem 1. If the correspondence between FE (1) and its realiza-
tion system R, (L)) is one-to-one , R (L)) is isomorphic with the faithful realization system
Jia (22). Therefore we have.

Corollary 1. Assum that a « R.(a) is one-to-one. In order that E(1) is a
semigroup, it is necessary and sufficient that Rr(a@) R\ (b)=Rx(arb) for every
a, beE

Corollary 2. Assume that a < Ly(a) is one-to-one. In ordey that E(\)
is a semigroup, it is necessary and sufficient that Ly(a) Ly (b)=Lx(bAa) for

every a , b ¢ E.
§ 3. The Ordering in 1I.

Definition 8. If (a\b)uc=ar(bpuc) forany a , b, ¢ ¢ E, then we denote it
by AZ 4 orby xS 4

Theorem 2. Let A, u € M and pe W . If 2= p and p= v , then
A= .

Proof. Forany a,b and ¢ ¢ E,

cpe WL b=bpub")

~

(ai b)uc:{a ACH b")}yc

={(a/1b’),ub"}vc oAz w

=(@arb) pb’vce) e o= v)
- ai{b’y(b”vc)} Co 2= 0
_ al{(b'# b”)vc} o n = )

Il

al(bvc).
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Morecver it always holds that A 2= A for every A € M. If we are confined to the uni-
versal semigroup operation system 11, the relation . is a quasi-ordering (5) in 1. Let us
identify A and ,, dencte A~,, when A2z, aswellas X< . Then 1 becomes a
partially ordereci set under the identification (67 .

Remark. The universality of , in Theorem 2 has an effect on the transitive law.
More precisely, if it were not for the universality, the law would not necessarily hold (7). Let
us take for example the finite set M (of three elements @, b, and ¢) in which the three

2)

semigroup operations )\, , and p are given as the below product tables show.

A /t v
[3%, ol ol p | % .|
,.J;{,a‘b.c‘ o @ | b | ¢ 4,,5_\«,(1‘_17_‘|c
aa‘(za la (z‘a;a‘[ 1 a a‘ala
blalsls| |bfalala jibraib’a
‘c a‘b‘[c! IL a%a‘a 'ciaia‘c

1° At first we must show that 2, ,, and p are all semigroup cperations. In fact,
respecting 4, it is evident; es far as A, , are concerned, we can prove them easily dy Theorem
1 or dy direct method (8.

2° A=

For, «x,v, and 2z symbolling one of @, b, and ¢,

(xAy) pnz=a, xAypz)=xla-a. Hence (% 2y) pz=x Ay nz).
3 nz v
For, (x py)vz=avz=a, xp(vvz)=a, Henee (X uMva=xpu(yva).

4°  On the other hand (93 A2 .
For, (bAc)vb=bvb=b, DA(cvb)=bla=a. Therefore (bAc)vb=xbi(cvb).
Now let us define «, § as following:
Xxay-y , xBy=x for every x, wve K,
where @, 8 1is essily shown to belong to 1. Then we have
Corollary 3. « == XA and 1 . [ Jjor every A€ M.
Proof. For any x, v, z ¢ E,
(xay)lz=v1iz, xa(viz)=y2z,

and (x Av)Bz=x2y, XN(yR2)=xky ;

2) u is not univeisal.



hence (xay)rz=xa(yiz), (xAy)Bz=xi(yB2).

Consequently we can assert that 11 s the above and below bounded tartially ordered

set under the mentioned adequate identification.

§ 4. The Problem of Ordering in

the Realization System.

As the validity of associative law with respect to one operation has been reduced to the

)
problem in the faithfull realization system (cf. § 2, Theorem 1, 17), so the comparability between

different operations defined in E will be considered as that betwesn different realization systems

of E.
Theorem 3. In order that A = , for A, , & I, it is necessary and sufficient that
(1) Ri(@Ru(b)=Rxr(apb) for every a and b ¢ E.
Proof. Suppose that X\ = ,. ¥ x<cEckE ,

{Ri(a) Ru )}~ Re (OU{RA (@) 5 | =Ru(B) (21 )
=(Arna) pb=xr(apb)=Rr(a nb)x ;
otherwise, {fh (@) R, (b)} p=R.(b) {I_E/\ (@) P}=Eu (b)a=a nb=R\(a nb)p,
after all {R\ (@) Ru (b)} *=Ra(a pb) x for any % ¢ E.

Therefore we get Ry (@) R.(b)=Rir(a pb).

Conversely if (1) holds, then we shall arrive at
Ri{(a18) uel=Rfa 1 (b pod}.
For every @,b, and ¢ ¢ E,

Ri{a 1 o)} =Ra@) RaCh pc) (by Tteorem 1)

~R@{R @R} Gy (1D )

I

{Ex (a) B (b)}_m (¢)  (by the associative law in ¥5)
=Ra(a1b)R.(c) (by Theorem 1)
~Ru{(a1t) el by (1) )

Since the correspondence F\(x)— x is one to one, we have

(aldb)puc=alr(buc).

3) Two operations % and p are said to be comparable if either 2= 4 or 2 <l p:

N . _ . ]
said to be incomparable if neither 7 = # nor 7 < pu, denoted 7 % .
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Thus the proof of this theorem has been completed.
Similarly we get

Theorem 3’. In order that 1 = 4 for A, e M, it is necessary and sufficient that

A Lu(a)Ir(b)=L.(b1a) for every @ and b e E.

we note that the above theorems need no assumption of universality and that they are the
extensions of Theorem 1 and 1, In order to establish Theorem 4 and 4° equivalent to Theo-
rem 3 and ¥, a few definitions have to be prepared.

Definition 9. The one-to-one correspondence R (a) < R.(a) between i, and i,
is called the natural correspondence between i, and §i,. The natural correspondence between
@\ and g, is also similarly defined,

Definition 10. Let A and B be twe subsets of a set and < be the system compeo-
sed of transformations ¢ of AYB into itself such that ¢ (A)C A and ¢ (B)C B. If
besides @ there is a one-to-one correspondence f between A and B, and if f is pre-
served by - transformations, i.e. A>a <f—> be B implies Ase(a) (j—r ¢ (b)eB, then the
correspondence f is said to be invarient by @,

Now it follows from Theorem 3 (3") that RFi(a)R.(b) (or L.la)[.{b)) is thought as
the image of F.{(a) (L.(a@)) under the transformation meaning multiplication of F./a) (Lula))
by Ru.'bj ¢ Ru(ILar(b) e &) in the right side,

We shall call it %, - transformations (Q,—transformations), which, of course, may also be
applied to  R.(a) (L.(a)).

Theorem 4. Let A, pe¢M. In order that 2= u, it is necessary and sufficient
that

(1 T C R,

(2)  the natural correspondence between %in and . is invariant by Ru-trans-
Sormations.

Proof. Let us suppose (1) and (2). It follows from (2) that the natural corresponden-
ce Ri(a) o Ru(a) implies Rr(a) Ru(b) & Ru(a) Ru(b) for every @ and beE. On
the other hand, there is an element ¢ ¢ E such that R (@) B. (b)=Fx(c) by (1); and
Theorem 1 shows R, (@) B, (0)=R. (a pb). Hence we have E.(¢) < Ru (@ 1 b) conclu-
ding c¢=a u b due to the definition of the natural correspondence. Thus we have arrived at
the formula of Theorem 3. Conversely (1) and (2) follow immediately from Theorem 3.

Similarly we have

Theorem 4'. [In order that A= p it is necessary and sufficient that

(1) @ C &,



(2)  the natural correspondence between Q\ and R, is invariant by - trans-

. formations.

§ 5. Translations of Operations.

By a translation on M we mean a one-to-one transformation of M onto itself. The set
of all translations of M forms a group, which is called the translation group on M, and a
subgroup of which is called a translation subgroup on M. Let us denote by & a translation
subgroup on initially given £, and individual translation by . L, b, --etc. Then correspo_nding to
& the translation subgroup & will be defined.

Definition 11. We let a transformation & of It correspond to pe@ as follows :
A _E.> AE (for any AeM)
where the operation A% is defined as
a 3= b= (at A 2 for any @, be E.
Lemma 3. (a22b)2Ec=arED ).
Proof.

(aien) e ={ca Boxac {155 h et
a 2 (b A% ) ={a& A (b aE c)S}*"1= {at 2 CBE cs)}@_l.

Utilizing that A is associative, the given formula is proved.

L ®
Lemma 4. i =0hy.

Proof.
a A b= (ab AE BN =(gbt ) pEETIET —g 20E D for every a, be E.
Hence A8 = b8 for every A¢M.

It follows from Lemma 3 and 4 that the operation A% belongs to 9t and that any 3}
has A% as its inverse image under the transformation ¥. Thus I for pe@® has been asser-
ted to be a translation of 9t ; moreover I becomes, in f ct, a translation of 1. It is for
this reason that the following lemma shows.

Lemma 5. [f 1 is uuiversal, A% is uuiversal.

Proof. Given any ce E, we denote ¢% by ¢. Since 2 is universal, there exist ¢

and & such that ¢ —=q’ A 0. Letting a=a’¥", b=b%", we get c=q A% b; thus A% is universal.

Tf the set of all L for pe¢@® is denoted by &, we have

4) a* represents the image of a under the trapslation ¥ of E.

5) 753.5:(7;3)75, a@b:(ag)h,



Theorem 5.

® is anti-homomorphic on 8. Accordingly & forms a group.
phisms in an algebraic system. E
Lemma 6.

We call @ a principal tianslation subgroup on 9t (or U) to & What condition does

A=2% for i2eM
Theorem 6. &

& require in order that it is anti-isomorphic on &7 Let W (1) be the group of all automor-
with  A.
if and only if

is anti-isomorphic on
A €5

e AHANGS.
& if and only if
f\} A AG = {e}

(cf. (101)
Now we define a translation subgroup 3 other than . B shall be generated by the only
one translation p of I or I, where p maps any 2 to ¥ ' given as
XAy =y21x for x, ye E.
The subgroup generated by & and Pt
M (or W) to §.
Letting L =1)p =

b,
Corollary 4.

On the

iﬁ:é‘ =fﬁ>

is called the fundamental translation subgroup of
we immediately have
Corollary 5.

=1y =
E(1%).

K=

)
E ()

relations between transiations of operations and the initial set E.

Q

is isomorphic on E (A%),

and E (1)

is anti-isomotphic on
§ 6. Relations between the Ordering and

Translations of Operations.

Theorem 7.

lations and we shall refer to the relations between the ordering and classification by fundamental
translations uuder some additional condition.

In this peragraph the comparability of operations will be proved to be invariant by trans-

[f A Z JZ then i& :/; ﬂi’ e < /lé for any 1€ @ .
Proof. For any q, b, and ce E.
(@A) uf c=1Ca A3 b3t p VS =frar 2 68) 4 et
( {
= {ag A (0% u cg)}syl (-
={a3 A (b pE c)@1 e

Az )
h =a (b ufc).

Hence AE = LE.
(a 4 20) K¢ :{cs A(a i b)l"'}r1=-fc§ 2B )l
= {Cet 260 patf®”
6)

Ce Az w
{¢} s the set composed of only identity of .
7) We can prove easily that A" €11 if ZAell.

8



={(b ER as}g_i-—*a 1E (b AE 0. Hence A% < 2.

Definition 12. If there is a suitable y ¢ § such that A=,% then 2 and 4 are
said to be congruent, dencted 1= 4.

Since this binary relation = is obviously a equivalence relation, we can classify 9% by it
This classification is called the classification of 9 by @&, written Sﬁ/@, whose elements are
classes _J, @B,--- composed of operations. Here we call only 11/@ to account, into which a
quasi-ordering is introduced similarly as that in 1.

Definittion 13. Let _J, ® ¢ /8. We denote _jJ= @ if for any Ae _j there
exists one at least e ¢§ such that 2 Z 7

It is evident that the binary relation 4 > ¢} is a quasi-ordering in 11/@. By Definition
12 and Theorem 7 we readily obtain :

Theorem 8. Definition 13, the following (1), and (2) are all equivalent.

(1)  For any pe B there exists one at least A< _j such that A= p.

(2) There exist A3 4, pne PR such that A= p.

Now we are confined to the case that ¢ is ﬁnité.)

Theorem 9. If 1= p, then either A~y or A ZE p.

Proof. We suppose that 2 and p are comparable, say 1 = p. Since there exists
re® such thﬁt o = A% by Definition 12, it holds that 2 = A¥ (D; while, @ being ﬁnitegf
© is finite, whose order is n. Applying translations I, §% .., I successively to both sides
of () by means of Theorem 7, we have A > AT > 28> ... > 2¥"=1, following that A~p.

Theorem 10. [f there exist i¢ ] and uc P such that A 2;14(1) then &£
for any £¢ j and ne¢P. '

Proof. Suppose that there exist £¢ J and 753 @B such that & <55, Since p =g

i

for a suitable re®, we have A= u = £8 'Theorem 9 shows that A~gE, and so A < £§,
resulting in  A~py, which contradicts with the assumption that A 4 4.

Let J~B i J= B aswellas J< B

Theorem 11. I~ @ if and only if there exist £¢ _Jj and (e F such that
g~g.

Proof. Suppose that _jJ~ @. Then there exist A, ve _j and p, ne¢ B such that

Az p and py <. Having p=28 for some p and Af> 4f it holds that 4% < g,

8) The number of elements of & is finiite.
9) By Theorem &.
10) 23 ¢ symbols the fact that 2> % but A4 g.

9



while uf>> % by Theorem 9 ; hence A¥ << 4. Fimally AE~pE where, of course, AFe 7,

ute R. The converse is needless to say.

§ 7. Some Necessary Conditions

in Special Cases.

In this paragraph we shall atrange some necessary conditions which are fulfilled by a pair of
comparable operations under the special assumptions. If E with the operation A has a right
(left) identity e or right (left) zercl)l) n, then fof the sake of simplicity we shall say that the
operation A has a right (left) identity e or a right (left) zero # respectively, or say that
e or n is aright (left) identity or a right (left) zero of 1 respectively.

Ideals (11) Ll (a), I (a) for ae¢ E are defined as

L'(a&)=[xkalxcE], L"(@)=[alx]|xecE]

Theorem 12.

(1> If 2 has a right identity and A= p, then o< Ry and L) (@) c IV (@)

for eve every acE.

(LY If u has a left identity and 2= pu, then 8 c & aend L'(a) < Ll (a)

for every ac¢kE.

Proof of (])- By the assumption, there is such an element ¢ that g A e=a for every
aceE. Since A== u wehave aux=(ale)ux=arx(enux) for every % ¢ E. From
this we get Rp c Ra and L7 (@) c L7 (a).

Theorem 13.

(1) The element e is a right identity of X as well as a left identity of nu.
Then either A=pu or AZF u.

(11D The element e is a left identity of 1 as well as a right identity of u.
Then either A=p or Az p.

Proof. of (1). Suppose Az u, then xpy=—(xie)uy=%2i(epy)=x2y
for every ¥ and ye¢ E. Hence 1= pu.

Theorem 14. If the element e is the two-sided identity of both 1 and u,
then either A= p or AZEpu.

Proof. Suppose A= pu or A< pu, then we have x Ay =xpy for every x and
yeE; hence 1= pu

Theorem 15.

(1> If A= u then a right zero of p implies a right zero of 1.

11) By a right zero 7 of E is meant such an element 7 that x2n=n for all xekK.

10



(D) If Xz u then a left zero of N implies a left zero of pu.

Proof. of (1) Let n be aright zero of x. xAn=xA(Yypun)=(XAN pn=n.

Theorem 16.

(1D If 2z p and n is a right zero of A, then nuy for ve¢E is a right
zero of A.

(> If 2= u and n is a left zero of p, then xin for x¢ E is a left
zero of pu.

Proof of (1) Forevery xeE, x2(nuy)=@2n)puy="npy.

Theorem 17.

C1> If A= pu and n is the only right zero of XA, them n is a left zero
of pu-

() If A= p and n is tihe only left zero of u, them n is a right zero
of M.

Proof of (1) By Theorem 16 (), s puy for yeE is aright zero of A. From

the uniqueness of right zero follows # puy = n for every ye E.

Notes.

(13 The study of semigroups semigroups has been achieved by many mathematcians,
Arnold, Lorenzen, Clifford, Suschkewitch, etc., but I have not yet read their works. With res-
pect to the representation of semigroups, see

E. Hille : Functional analysis and semi-groups, 1946, p. 147.

(2] Let P, Q, R be transformations of a set M. By the definition of product,

{(POR}x=R{(PQ)%}=R{Q(Px)}, {PQR)}x=(QR)(Px)=R{Q(Px)}
and so {(PQ)R}%={P(QR))} x for every xc¢ M. Hence (PQ)R=P(QR).

(33 If E(\) is a semigroup,

{R\(a)R\(b) }x=Ry(b){R\ (@) x }=R\(b)(x A a)=(x A a)Ad
=xA(aib)=Ry.(aAb)x; therefore R)(a)Rr(b)=Rr(aNrb).
Similarly Ly (@) Ly (b)=Lr (b1 @); hence if E()\) is a semigroup, then R, aud £ are
algebraic subsystems of ¥, and consequntly semigroups. However this converse is not true unless,
the correspondence @ < Ry (a) is one-to-one.

(4] We suppose that E is a semigroup. Evidently (x X y)X 2=% X (¥ A 2) for «x,
ze E; by the definition of X, (P X )X y=p A Xy, AP Ay=xA(@PAry), and
(XN DP=xXNONPp) for %, ye E. Thus E is a semigroup. The converse is proved by

Lemma 1 and 2.
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(5) (6) Birkoff : Latfice theory, 1948, p. 4.

(7] 'There are cases that the transitive law holds, even if no universality is assumed. For

example,
§ 7 ¢
la b la b la b
ala b e Uil PG where surely ¢ =9, n=¢ and £=¢.
bla b bla a blb b S0 s SEo5

(8] We can prove them not by Theorem 1, but directly by the product tables. In greater detail,

Takayuki Tamura: On the condition for semigroup (Japanese), Shikoku Sugaku Danwa,
No. 2, 1951.

( 91 Furtheremore we have A\ =5 v.

(10} In reality it holds that A (AE)=A(A) forany e @.

(11) Takayuki Tamura, Characterization of groupoids and semilattices by idealds in a semi-

group, Journal of Science of the Gakugei Faculty Tokushima University, Vol 1, 1950, p. 37.

August 1951, Gakugei Faculty,

Tokushima University.

Addendum to the paper ‘“ On a relation between local

convexity and entire convexity.’’ in this Journal, vol. 1.
In p. 25. vol. 1. I defined “convex point x of M, which is explained additionally as

following.

If there exists ¢ > 0 such that U (x; &)~ M, as far as nonnull, is con ex for any
positive & < 8, the point of the space 2 is called a convex point regarding M, or

M is said to be (locally) convex at x.
Furthermore 1 correct the errors in the same paper as below.

error correct
line 4, page 29, for any E>0 for a sufficiently small & > 0
last line page 29, for some v <0 for some ¢&;, v >0
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