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ON THE BEHAVIOUR OF POWER SERIES ON THE
BOUNDARY OF THE SPHERE OF ANALYTICITY IN
ABSTRACT SPACES

By
Isae SHIMODA

(Received Dec. 20, 1950)

In classical analysis there exists a singular point at least on the circle
of convergence of the power series, but this is not true generally in the
case of the power series in complex-Banach-spaces. In this paper we shall
investigate a necessary and sufficient condition for power series in complex-
Banach-spaces to be analytic at all points on the boundary of the sphere

of analyticity.

Let E and E’ be two complex-Banach-spaces and an E'-valued func-
tion A,(x) defined on E be a homogeneous polynomial of degree n. Then
the radius of analyticity of the power series nf‘:g h,(x) exsists, which is
written by 7. The sphere ||a||< 7 is called thé sphere of analyticity of
the power series 72 h(2).

Theorem 1. I;z order that i h(x) is analytic at all points on the

n=0

boundary of the sphere of analyticity, it is necessary and sufficient that
Tim §/sup [[5,(2)] < - (1)
L) zEG T

for an arbitrary compact set G eaxtracted from the set ||a||=1.

Proof. Let 2 h,(2) be analytic at all points on ||a||=r. If a compact
n=0

set.(¢ extracted from |x||=1 exists which stisfies the following equality
Iim {Sup [, (@) =~
7 >00 zEG T

we have

L <Sup (@] (2)

=

*) Isae Shimoda, On power series in abstract spaces, Mathematica Japonicae Vol. 1, No. 2.
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for a sequence of positive numbers & >&, >... >&, > ..., which tends to
zero, and 7, which corresponds to &,, where =1, 2,...,%n,.... Since G is
compact, there exists «;, in G which satisfies

sup Nan2)|| = | An2,)]| -

Then we can select from {z;} a subsequence which converges to @, of
course 2,€G. In order not to change notation we shall suppose simply
that the sequence {x,} itself converges to x,.

Put (r+¢&,)2,=y, and ra,=y,, then y, converges to y,. From (2), we
have

1< || Bny)ll - (3)
where =1, 2, 3, ... .

Let M be a compact set composed of z,e", where 0<C4<2nx.
Since Z h,(2) is analytic on M, we can ﬁnd a finite system of neighbour-
hoods Uj of yo ¢V (j=1, 2, ... ,m,) such that 2 U; covers M and ]|Z ()]l
<N for yEEUJ Now we choose two small positive numbers 8 and p,

J=1 a

so that ya € j}] U;, where ||ly—v,||<p and |a|=1+6. Then we have
=1

2 h(ay)
da < a

th(y)“’—H S atl

Ia! 1+8

(1+8)"

for n=1, 2, ... and ||ly—¥,||<p-
Since y, converges to y,, (4) contradicts to (3). This shows that the con-
dition (1) is necessary.

Let 7, be an arbitrary point on ||y||=7. Suppose that there exists a
sequence {y,} which converges to y, and satisfies the following inequalities

ljﬁ f/HhN(yi)Hzl_Si (5)

for i=1, 2,..., where a sequence of positive numbers {&,} converges to
zero with &,,,< &,. Put Y=z, and {«,}=G. Then G is a compact set

T 1l

on ||z||=1. Now we assume (1) Then there exists a positive number E such
that im Sup [[A.(0)] < ih . From this, we have |[h(2)l1< o

b

n>eo +3¢ 25)”
for n>n, and i=1,2, .... Since x——H%H ()] |<< ”32”6) for n>n,
and i=1,2,.... On the other hand, there exists N such that |y,|< 7+¢&

for i >N, because y, -, and ||y, ||=r. Thus we have
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im )2,y )] < ML<;Z*£/1
e r+26 7108

for i>>N, contradicting to (5). From this we can easily see that there
exist two positive numbers § and & such that lxm V@) <1—¢& uni-
formly for ||y—v,||< 8. Hence, 2 () is umformly convergent in |ly—,]|
<8 and then HE_:,) h,(2) is analytic in ||y—,||< 8. This completes the proof.

An example is afforded which is analytic at all points on the boundary
of the sphere of analyticity. Put %,(2)= mE (l—l> xm, where x=(x,, 2, ...)
is a point of complex-l,-spaces, and h,,(oj) takes complex numbers as its
values. Then the radius of analytlc1ty of ‘21 h,(x) is 1 and yet Z h,(2)

is analytic everywhere on || =1.

The radius of analyticty of foj h,(2) is given by
n=2

1 — sup tim PR
T llzli=1 7>
Since ||#||=1, |x;|<1 for i=1,2,.... Therefore

1 n n ,,,'

= sup lim -

;=i A 305
< lim K/!n<l-—l>n J (6)

N0 m

I

Now put X,= (0,..., 0,1, 0,...), where only m-th coordinate is 1 and others
are all zero. Since ||X,,||=1, we have

L >tim A& =1m (1~ 1) = 1-=,
7 7300 72>00 7
for m=2, 3, ... .

Hence from (6), we see that r=1.

Let G be an arbitrary compact set on Hx||*1 then there exists the

convergent series of non negative constant Z] =1 such that E |, |2
n=1
< Z @ for x € G and m=1,2,3,.... lf a;=a,=a¢;=—--- —a»zoﬂo and a»;0+1+0,
n=m N =
|2,2<<1 for m=1,2,..., m+1 and |[&,[P<] X |z,P<] 2 @1 for
Uil n=ng-+2

*) Isae Shimoda, On power series in abstract spaces, Mathematica Japonicae Vol. 1, No. 2.
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m>n,+2. Put §=max ( S , Y/ al> , then 6-71. Thus we have
72‘0“[‘4L no+2
n 1\* ny+1 1\* n
I@l=1 3 (1-LYaul< S (114 3 < Hence,
m=2 m m=2 m 772=210J,—2

13?2 V' W |<<6< 1. Thus Theorem 1 is applicable, and we see
that NS_,‘ h,(2) is analytic everywhere on the boundary of the sphere of analy-
ticity.“

Theorem 2. In order that there exists ot least « singular point of
g_}) h(x) on the boundary of the sphere of analyticity, it is necessary and
sufficient to ewist at least « compact set G on l\|z||=1 which satisfies the
following equality
lim §sup @) = - (7)

N300

=

Proof. If there does not exist a singular point of Z} h,(x) on [la|l=T,
n=9

it must be analytic on ||z||=r. By appealing to Theorem 1, we bave
tim §/sup (17, (@) < -,
N-»c0 xC G T
in contradiction to our assumption that lim {“sup ||Z.(x)] = 1 The in-
7300 zeG T

verse is proved as well.
Similarly we bave Theorem 3 from Theorem 1.

Theorem 3. If o power series > h,(x) is analytic at all points on the
n=0

boundary of its sphere of analyticity ||x||=, then we have

m /Tl < 2 (8)
70 T
for an arbitrary point a on ||x||=1.
From Theorem 3, we have following theorem.
Theorem 4. If o point x, which lies on ||a||=1, satisfies the following
equality
im 3 @) =2,
LEa) T
then there exists al least o singular point on ||x|=r.
The condition (8) is necessary for Ifjo h,(x) to be analytic on the

boundary of its sphere of analyticity, but is not sufficient as the following
example shows.
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Put %,(X)=2""1y in the complex-2-dimensional spaces, then %,(X) is a
homegeneous polynomial of degree n, where X=(x, y). We have

n—1 1
n N T n w
sup 1/ [,(X)] = sup Iim |2 * |y
ilxli=1 [1.¥ii=1 n>e0
=sup ||
Hrh=1
= 1

That is, the radius of analyticity of Z h,(X) is 1. Now let G be a com-

pact set on || X||=1 composed of XO—(l 0)and X,= <‘/1_.,‘ V/l)’ with
m

m
m=1, 2,....
Then we have
im jSup [,(X)|| = lim Gl (1__17,>" I
N300 Ten 7
1

because (1—t)""'¢ takes its maximum at {=— in the interval 0<l¢<{l1.
N

Thus Theorem 2 is applicable and we see that Z %, (X) has a singular
point on the boundary of its sphere of analyticity.
On the other hand, we have

'_l

lim A,(X)] ——hm laz| *

7 .y00

1
://l n

= ]x]<1, for y=0 on || X||=1,
=01, for y=0 on |IX|=1

This shows that (8) is satisfied.

Gakugei Faculty, Tokushima University
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KARAKTERAJ ECOJ DE LINIA KONTINUUMO

De
Mitio NAGUMO

(Communicated by Y. Watanabe, Oct. 1, 1950)

Linia kontinuumo signifas simple ordigitan sistemon kiu estas izomorfa
je la sistemo de la realaj nombroj. En tiu ¢i noto ni volas montri, ke la
linia kontinuumo karakterigas kiel kontinua simple ordigita sistemo kun
simple transitiva grupo de automorfismoj.

1. Sistemo S estas kontinua simple ordigita sistemo en la sekvanta senco:
(I,) Sez,€S(»=1,2), tiam guste unu el la tri sekvantaj kazoj okazigas :
(D) zy=2,, (2) v,<&s (3) @,y
(I,) Se x,<w, kaj xy,<w;, tiam x,<x;.
(I;) (aksiomo de Dedekiric‘l) Estu S,, S, partoj de S tiaj ke
S;VS, =S8, S;AS:={}Y,

kaj z,<x, por ciuj xv € Sy(»=1,2). Tiam ekzistas guste unu , €S
tia ke
v, <z,<w, por ciuj . € S.(r»=1, 2).

2. Automorfismo ¢ de S signifas 1-1 bildadon de S sur la saman S tia
ke el o,< @, rezultas ke o(x,)<gp(x,). Sistemo A de automorfismoj de S
estas simple transitiva grupo en la sekvanta senco :

(II,) Se ¢, €A(»=1,2), tiam @,p, €.

(II,) Por ciu paro z,, 2, el S ekzistas ¢ € tia ke ¢p(x,)=2x,.

(II;)  Se gy (2y)=ps(2,) por iu x, €8, tiam ¢,(x)=g,(x) por ¢iu x €S.

Lau bone konata maniero el (I) rezultas la ekzisteco de la supre limo
de iu ajn supre barita parto de S.

TEOREMO. Se g (2,)< po(x,) por iu x,€ S, tiam ¢, (x)py(x) por ciu

xzeS.
Por pruvi tion ni bezonas la sekvantan:

L {3} signifas la malplenan aron.
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HELPA TEOREMO. Se ¢,(&) (&) por iu £€S, tiom ekzistas '& kaj
E(€S) tiaj ke EE<E kaj gpi(a) o) por E kL

(Pruvo) Metu §=q;ig,(£) kaj E'=gpiipy(£), tiam gu('&)=gp,(E)pa(£)
kaj g (E)=qpu(£) >p(E). Sekve "< <. Por /g« w<E ni havas ¢ ()<
Pi(E)=ps('E)< po(@). Kaj por E<a< £ ni havas ¢, (2)< py(E)=pa(£) = pa(@).

(Pruvo de Teoremo) Se ekzistus iu a, -, tia ke g (a)) >p.(x,), tiam
metu T=supi{a|r< @, ¢(@)< g (x)i(€S).

Do z,<z<x,. Se estus ¢,(T)=gp,(Z) (sen egaleco), tiam ekzistus, lau
Helpa Teoremo, intervalo /&< a< &' tia ke 'E< &< & kaj ¢,(@)=wpy(@) por
e <& Tio kontraudiras kun la difino de Z. Sekve ni havas ¢,(Z)=q,(Z).
Kaj el (II,) rezultas ke ¢,(2)=gp,(2) por ciu « €S, kio kontraudiras kun
(@< po(2,). En la simila maniero la ekzisteco de iu a<7x, tia ke
¢ (@)< po(,) kondukas nin al absurdeco. La teoremo estas do pruvita, car
la kazo ¢,(x,)=g¢,(2,) estas ne ebla.

3. Nun elektu iu ajn difinitan elementon el S kaj nomu gin “0”. Por ciu
elemento a ¢ S ekzistas lau (IL,) kaj (II,) guste unu ¢, €9 tia ke ¢,(0)=c.
Difinu la operacion aob por ¢iu paro @, b el S per
aob = g(a) .

Tiam ni havas:

(I11,) (acb)oc=as(boc) por ciuj a,b,c€S.

(I11,) 0:a=c¢ 0=¢ por ciu ee€Ss.

(ITI,) Por ciu a €S ekzistas guste unu @ tia ke a~a=a a=0.

(I11,) Se a,< ay(as€8), tiam por Ciu x €S verigas

. (1) aea<’ayex, (2) woa,<woa,.
(I11,) (aksiomo de Arkimedes) Se 0< ¢ kaj 0<7b (a,b€S), tiam ekzistas
natura nombro » tia ke

NG = Q>G> >D.

—

n foje

(IIT,) aob=boa por ciu paro a,b el S (komutebleco de o).

(Pruvoj) (11I,) La ambau membroj de la egalajo egalas je g.pupa(0).
(I11,) Oca=gp,(0)=a. Kaj p,(x)== lau (II,) car ¢,(0)=0, sekve ac0=gp,(a)=q.
(II1,) Metu @pz(0)=a, tiam ecad=p,ps'(0)=0. Kaj gpa(a)=pa'(x) lau (11,),
car ¢pz(0)=pz1(0), sekve G~a=q; (a)=pa'(a)=0.

(II1) (1) ayea=gp. ()< pa;)=a,0.
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(2) El 9, (0)<p,,(0)(p, (0)=a,) rezultas ke g, (2)< p,(«) lau Teoremo,

nome zo¢;< ey,

(ITIy) kaj (I1I) sekvas el I,-I, kaj III,-III,. Vidu la libron ‘ Koncepto de

la nombroj ” (japone) de Prof. Takagi, (1949 el Iwanami) p. 92.
Konsekvence ni povas skribi a+b anstatau a-b. La ecoj I,-1; kaj

III,-IIT, montras ke S estas izomorfa je la sistemo de la realaj nombroj.

Komparu la cititan libron de Prof. Takagi.
Osaka University.
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ON LATTICOIDS.

By
Naoki KiMURA

(Communicated by Y. Watanabe, Nov. 20, 1950)

1. G. Birkhoff presented the following problem in his book™ :
Problem 7. What are the consequences of weakening L 1 to

UL =aNa
and I. 4 to

aulzny)=an(xzvy)?

In this note we shall discuss the structure of the system on the results
of weakening L 1 to

rUX=2Nx
and I 4 to
sv(zny)=an(xwvz).

Such a system is called a latticoid below.

Types of latticoids are seemed to be very complicated, and we cannot
yet determine them, but in the special case (called simple) we schall give
all types by means of the corresponding lattice (denoted as «(L)) and a
set of cardinal numbers.

Latticoids, above all, simple latticoids are seemed to be the most
natural generalization of lattices, with respect to several aspects.

2. A set L of elements a, b, c,... which satisfies the following five
conditions, is called a latticoid :

(0) Two binary operations v and n are defined to each ordered pairs
a, b of L:

a,beL imply evbeL and eanbel,

(1) eve=ana,

(2) avb=bvua and eanb=bna,

*. G. Birkhoff ; Lattice Theory p. 18, 1948.
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(3) (evdb)vue=av(buc), and (end)ne=an(bnec),

(4) av(anbd)=an(ave).

Note that the last condition (4) means two elements av(anbd) and
an(awd) are always equal, and do not depend upon b.

Put
pla) =ave=ana,

ala)=aJland)=an(avec).
Lemma 1.
(1) ola)=aXpla)=avavae=ananae=ay(ana)=an(aa).
(2) Let p(a) be a polynomial of a of degree n, which is greater than
or equal to 3, then we have
»(e) = o(a),

(3) eXola)=c(a),

(4) o(a)yXo(a)=o(a),

(5) o(o(a))=o(a),

(6) o(axb)=c(a)Xa(b)=0c(a)=<Xb=axXqa(D).

(3), (4) and (5) are the special cases of (2).

Proof.

(1) By the definition of p(e) and o(a),

(3) ave(a)=av(en(eva))=qd(a) (the definition of o(a)).
Dually we have ano(a)=o(a),

(2) By the (n—4) iterations of (3).

(4) and (5) are only special cases of (2).

(6) olavb)=(aud)v({(avd)nd)=abyud(b)=a\d(d).
In the same way, we have

o(avudb)=o(a)ub,

and,
o(aub)=o(a(avd)) (By (5).)
= co(a\va(d))
= o(a)\v (D).
Hence

a(aud)=a(a)vo(d)=cdla)vd=ava(D).
Dually, we have
aland)=cola)N () =ocla)nb=0an a(b).
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Theorem 1. The sublatticoid «(L) of L is « lattice, where
(L) =(o(a); a€L).

Proof. o(L) is a subset of L, so o(L) satisfies the conditions (2) and
(3) of the lattice. The preceding lemma shows that o(L) also satisfies the
another conditions (0), (1) and (4) of the lattice.

Theorem 1. (L) is the greatest latlice of all sublatticoids of L.

Proof. If L' is a lattice contained in L, then o(L/)=L'. Now L'L
implies o(L')Zo(L). Hence L'=o(L'")o(L).

Theorem 1. A latticoid L is o lattice, if and only if

L=o(L).

Proof. 1f L=o(L), then L -is a lattice (Theorem 1.). Conversely, if
L==¢(L), then L cannot be a lattice, for o(L) is the greatest lattice
contained in L (Theorem 1').

Theorem 2. The mapping o:a—o(a) of L onto o(L) (or into L) is @
lattice homomorphism in the sense that

(@ Xb) = o(a)<a(b).

Proof. DBy the lemma 1, (6).
The mapping o yields a partition of L, such that ¢ and b belong to
the same class, if and only if o(a¢)=0o(D).
In the partition by the mapping o, we shall denote the class which
contains «€ L as @ i.e.,
6= (x; o) =o(a), x € L)

We can easily see that
L2 p(L) 2 p*(L) = o(L),
where
p*(L) = p(p(L)).

Theorem 3. Let a latticoid L be lattice homomorphic with a latlice L'.
Then the lattice (L) is lattice homomorphic with L'.

Proof. Let f be the lattice homomorphic mapping of a latticoid L
onto a lattice L’. Then we have

flo(a)Xa(b)) = f(a(@))X f(a(D))

for o(L) is a subset of I.
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Hence f gives a lattice homomorphism of «(L) with L'.

Theorem 3'. Let « lotticoid L be lattice isomorphic with o lattice L.
Then L must be o lattice which is isomorphic with L.

Proof. o(L) is lattice homomorphic with L’ by the Theorem 3. And
this homomorphism must be a one-tc-one mapping. This means that (L)
is lattice isomorphic with L’. But L is lattice isomorphic with L’. Then
L is lattice isomorphic with o(L) by the mapping ¢—o(e). Hence L=o(L).
Therefore by the Theorem 1’ we can conclude that L is a lattice which
is isomorphic with L’.

Theorem 4.
xve=2x implies &= o(x),

and dually
zne=ux implies x= o).
Proof. 1f
UG =2,
then,
T=ave=2avavae=2avaeveve=2zdo(e)=cwVva)=x)

for TuaG=xa.

In the same way, we have x=o(x), when & e==x.

3. A latticoid L will be called simple, if for any two elements «, b€ L,
always a<Xb € o(L).

Lemma 2. If a latticoid L is simple, then

@b = o(a)Xb = aXo(b) = o(a)Xo(b) = o(a)XD).

A latticoid L will be called latticoid homomorphic with a latticoid L/,
if there exists a mapping f of L onto L/, such that

flo(aXb))=a(f(a)X (D))

In this case f is called a latticoid homomorphism of L with L. If f is a
one-to-one mapping, then the term homomorphism is replaced by isomorphism.
Theorem 5. For any latticoid L, there exists a simple latticoid L', with
which L is latticoid isomorphic.
Proof. A slight modification of definitions of v and n of L, such that

avb=a(aub),

and
aNb=c(anb)
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yields a new latticoid L’ with two operations v and A. It is easy to that
L is latticoid isomorphic with L/, and L’ is a simple latticoid.
Theorem 6. If « latticoid L is latticoid isomorphic with both simple
latticoids L' and L', then L' and L' are lattice isomorphic with each other.
Proof. 1If L is latticoid isomorphic with both L’ and L'/, by mappings
f, and f,, we have for each element pair «, b€ L,

(@)X F(0)=o(ffa)=Xfi b)) (For, L' and L" are both simple.)
= f{a(a)Ra(b))
= fi(a(@’XD)) (i=12)

Hence the mapping g=/f,f,"*: fi(¢)—fy(a), a € L, gives a lattice isomorphism
of L’ with L”, that is, I’ and L'’ are lattice isomorphic with each other.

Remark. It can easily be led by the above theorem, that the two
notions, lattice isomorphism and latticoid isomorphism, are coincides, so
far as we shall concern with simple latticoids.

A multiplicity m, of an element ¢ of L is the cardinal number of the
class @ of L.

Theorem 7. If any lattice L, and a set of cardinal number m, corres-
ponding to each element a € L are given, there exists a simple latticoid L/,
such that o(L') is lattice isomorphic with L and the multiplicity of each
element o(a') € (L") is m, corresponding to a, where « is a lattice isomorphic
image of o(a').

Proof. Take any element « of L, and construct a set @, which contains
@, and has cardinal number m,.

Suppose @ and p have no intersection, if a=}b, and let L’ be the set
union of @ for all ¢ of L.

Then L' forms a simple latticoid with operations

=y = axb,
where
rea, Yeb,

and
L’ 2 (}'(Ll) = L.

It is obvious that the multiplicity of each element x € a, is m,.
Theorem 8. A simple latticoid L is determined up to lattice isomorphism

by means of the lattice o(L) and « set of multiplicity of each element of o(L).
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Proof. Let L,and L, be two simple latticoids, and o(L;) and o(L,) be
lattice isomorphic with each other. Moreover let the multiplicity of each
element of o(L,) and that of corresponding element of o(L,) be the same.
The assumption of this theorem enables us to extend the lattice isomorphic
mapping between o(L,) and o(L;) to a lattice isomorphic mapping between
whole L, and L,, naturally :

if A1y, O € (L), @y €o(Ly),

then the cardinal number of @, and G, are the same.

Thus we can construct a one-to-one mapping between @, and Gy sO «: L0

@, correspond to a,.
This extended mapping between L, and L, must be a lattice isomorphism
between them :

if X1y, Y1OYy, then o(@)oo(8,), o(y1)eoo(Ys).

Therefore @, Xy = (1) X (y1)0(23) X 0(Y,) = 2 XYe.

A slight modification of the proof of the preceding theorem leads the
following.

Theorem 9. A latticoid L is completely determined wup to latticoid
isomorphism by means of the lattice o(L) and a set of multiplicity of each
element of o(L).

(Tokyo Institute of Technology)
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UNBIASED ESTIMATE OF THE MEAN
ABSOLUTE DEVIATION

By
Yoshikatsu WATANABE
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If the observed values of a quantity z be z,,...,z, and the mean value
z=3"z;/n, then the deviations are z,—z=uw;, j=1,...,n. The unbiased
estimate of the mean square deviation is given by the well-known Bessel’s

formula ot = a3/(n-1). (1)
However its demonstrations are found hardly legitimate in classical
books on least squares, except some fews, e.g. A.F. Craig’s elegant proof

given in Bulletin of the American Math. Soc., 1936, vol. 42. He pointed
out that (1) means nothing but the expectation of the sum of squares

Sai=V, ie EV)=(mn-1)0o2, (2)

and proved (2) under the assumption that a distributes normally. In the
present note a similar process is applied to generalize Peters’ formula in
regard to the mean absolute deviation ¢

9= Nla,| 1/ w(n—1).

1° Characteristic. As well known, the distribution function (density
of probability) f(x) as well as its characteristic g(¢) are defined as follows?

;

foy=go| eg(tait, gt)=|" e*f()ia. (3)

Or, in case of many variables,

f(xl’ vee 3y xm) - (le)m‘ A j e_Lg(tlﬁ see 3 tm)dtl cee dtm ’ 1

9Ly, ... ,t,,,,)-—:r r e f(ay, ..., @)%,y ... A, , J (4)

where L =izt +--- +i2,,t,, .

1> See the annexed References.
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Now, for a single valued continuous function w=U(y,...,%,), Where
@,,..., %, are assumed to be independent, the distribution function F(u)

shall be given by
F(u)du=j' § f@, oo s w2)dR, .. daty
D

where @, ...,x, should be taken over the domain D that satisfies the
inequality u<U(z,,...,%,)<u+du. To avoid this inconvenience, let us
multiply, after Cauchy’s devise, both sides by the function®

o u+du .
| at| g

27 w

which becomes =1 in < u, u+du_>, and otherwise =0. Then the domain
of integration can be extended to the whole n-dimensional space E,, s0O

o u+an > o o0
dtS e-ziing y eitUf(x,, ..., x,)dx, ... dz, .

— 00 (3 el — 0o

1
that Fu)du —2—71’j

Or putting the inner integral

r r EVF(Xy, ..., T, )dXy ... da, = G(T), (5)
we get
F(u)du = ir [e'”“du] G(t)dt ,
27) o
hence
Flu)= L j T et G (6)
27) _o

Thus G(t) gives the characteristic of F(u). Furthermore letting
w, = U@y, ..., %), k=1,2,...,m, (m<n),

the distribution function F(u,,...,u,) shall be defined by
Fdu, ... dum:j gf(wl, o de . de,
D o

where D denotes such a domain that w,<U,<u,+dw,, k=1,...,m. Here
again repeating Cauchy’s devises m times, and putting as the characteristic

0

Gty ... ,tm):j [ Ef(@y s 2,)d, . AT s (7)

2) Cf. the annexed References (*).
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where 0=it,U, +it, U, +--- +it,U,,, we obtain
o 1 © ] . ) ) )
FUy een s Up) = 76 =5 e\ e7"G(Ey, .., E ) L dE, . (8)
2z e J e
2> In our case, assuming that a distributes normally

oy — 1 {_a%}
f(&)——Vé}}_anpl 257} (9)

under the conditions that
= > a2, k=1,...,m, and u, (= u)=2|xv1 , (10)
V=1 V=1

where 1<m<mn, and all the coefficients are real, the characteristic in
accordance with (7) is given by

co

€xXp %itlul Rl itm+1um+ll f(xl’ vee s wn)dxl see dwn s

G(thn- Jth-l):j ""

v —oo

where f is determined from (9) to be

. . 1 v/9.2 — ST 2
f(@y, ..., &) = O Fmo) exp{ V/20 K V—§m~,.
Hence we obtain
- 1 ©0 o
G(Tys e s bpey) =~ g ‘ edw, ... dx, ,
/ " J 7
(l 27‘[0-) —co -0 } (11)
mt 1
where O =1 > tu,—V/2:2 .
=1
In order to perform the integration, we write
J— 1 ! > y 2 2 4/ - 2
6= — 9 3 r,—to (8‘1+tm+1) +o ('S‘J+tmn"l)
257 xy 0
5 3 e —iot(a- )| +ots 2! (12)
20_ i )\ v 7Y m+1 m*l S
where SN=— i‘alvt‘, . (13)
=1

So that (11) becomes

G(tl’ UCIORR ) m+1) [[ l/2 [I eXp l 2 (S +tm+ ) % +J exp l 2 ('5 )11.4-1)2;] ’
. (14)
where J={lexp = L [o itz b foa, (15)

The integrals (15) can be found by utilizing Cauchy’s integral theorem to be
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/ . S"Csvi‘lmi—l) ot2l2

w/%o-:i: to dt ,

0

so that (14) may be transformed into
n 2 ) 7
G(tyeee s Epsy) :V[JJl exp %—2 (s\;+t,,,+1)} lcosh (0'28‘,tm+1)+7—2=7[ <exp

(__ _% 028~,t,,,+1>g°<s"+t’"”>et2/2dt— exp < —%028yt1,,+1>j6<sv - l'm+1>et2/zdt)] . (16)
0 4]

In particular letting ¢,.,=0, we obtain as the characteristic of the
combined distributions function ®(u; ..., %,),

Gty ... st 0) :1] exD{—%fss} Eexp%—g;Q} . (17)
Since the numbers considered are all real

Q= ésy zk,:i:l 21 g Uy bty = LXL] Dutyts
is a positive definite Hermite form (Bt, t), so that the matrix B=(byu)
can be transformed into a diagonal one A by taking an adequate ortho-
gonal matrix C=(c¢y) SO as C’'BC=A : or in other words, by the orthogonal

transformation {=Cz: t,:chmzk, we obtain

Q = Sz} (>0 except when all z,=0),
=1

where the coefficients are all >0, and the jacobian J:aﬁu o000 ﬁm)zl'

a(zl’ ‘:- > Zm)
Thus we get
2 m
Gty .. » 1 0) = exp =% Shrat] (18)
L 24
and by (8) the corresponding distribution function becomes
1 (= .. —7q! -
D(Upy e s Uyy) = (_2_75)’_"’5% S»wexp§ L 5 detl ... dty,
_ 1 2 (7 expl——""0!
- (Zn)’”g_w Shwexpl L 9 Qsdz1 e dz, (19)

m
where L=1iXtu, =123 Sleuzy =1 202, and vy= Dlcul, .
=1 3 k I3 l

Now that the multiple integral in (19) might be decomposed into a product
of the form

m o 2 )
g 21;5 exp i— %()\.zz% +i;vlz;>} dz; s (20)
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the integration could be performed by availing Cauchy’s integral theorem,
and we get finally

my

1
VA e A (V 270"

D2y e, Um) =

exp{—sts 33( Bewne) /. 2D

=1

In particular, if w;=:--=u,,=—0, we have
®0,...,0)=1/1"A, ...\, V7 2m0)". (22)

3° The expectation of >'|a,|=u. Let F(u,,...,u,,u) be the combined
distribution function of «=>1|%,|, and «,(k=1,...,m) given in (10), and
let us find the expectation of u, when u,,...,u, are assumed to be fest.
Here, since the compound probability for wu,,...,u,, is ®(uy,...,u,) du, ...
du,,, while the compound probability for u,,...,u, and w is F(u,, ..., %,, ©)
du; ... du,,du, the relative probability becomes F/®, and accordingly the
required expectation can be given by

u = Sugdu , (23)

where the integration should be extended over all the possible values of
u(==0) as far as w,, ..., u, preserve the given fest values. But in virtue of
(4), the characteristic G(¢;, ... , t,4y) Of F(uy, ..., u,, %) is given by

Gty vn s by bmsr) :Sw Sw expglL+z‘utm+1);qu1 o dudu,

where L=—i ft;ul. Whence we get
=1

(SG

o (o) . F
T =\ | twe' ddudu,... du,, ,
atm+1>l‘m+1=0 S..oc jkm q) e ¢ u”

which becomes after substitution of (23)

oG S"" S“’ o g
=) =\ luy ... du,, .
atm+1>o B e’ ddu, ... du,

—c0

Therefore inversely we get by (4)

iad = (_ZiTF) S e”‘<azzcil\/0dtl ... dt,, . (24)

On the other hand we have by (16)

G:VZ_-Z gv(tm+1) >
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oS
[8%)

where ¢,(%,.,) denotes the v-th factor in (16), and consequently

2 ”m,
g,(O) = eXp g—%s.ﬂg s 'Q‘/ - 2 a’l‘)tl >
P i=1

and 95(0)= iaw,/?:[l—crsv eXD< 72:28“;)} ! ’z/zdt]
(a?,i > zg,(O) exp( Cal 2 su> .

This wvalue being substituted in (24), we ought to integrate it, which
is somewhat troublecome. However if the first m conditions of (10) be
linear homogeneous, that is, if u;=—---=u,,=0, then we can perform further
integrations. Really, form the result just obtained together with (22), we get

B L/Xl 7\1 O_n+1 2 n (Soo [_gﬁ( ]
u ————1/27 - ;zji? s_ exp 5 Q— > dt, ... dt,,

—“V g exp Q) Vet } 5 (25)

Let us evaluate the multiple integrals in the above large bracket, (i)
and (ii) say. In order to facilitate the integral (i), we must adopt another
orthogonal transformation {=C,{, so that the expression in the exponent,
which is also a positive definite Hermite form, becomes

. -0

.

Q‘,:Q“'Sa 2 9(.L —_— 2 Za’kuaﬂu)t tl - 2 Xllgl 2

(S84

and after integrations we get
SR (g Ve vms it (26)

In regard to (ii), we utilize at first the before mentioned transformation
t=0C%, so that @Q=>31\;22, and s,=> @, {;=>d,z,, where d, denotes the
l l A

vl-element of the matrix d=a’c. Integrating by parts, we obtain

m d%’l " oo 2 m m 2 l
(ii)=¢ Z g S exp {— = [Z\sz (Zd"kz‘) ] dz, ... dz,, .
=1 )\az —oo k=1 5

Here the expression in the exponent becomes

Eﬁ:(su v —dogpdy) s (8, = Kronecker’s delta)

by a third orthogonal transformation z:(}ffg*, and after integration, we get
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1 /2:_ m m d %L

(i) = e A (27)

ﬂl/
Substituting (26) and (27) in (25), we get, as the generalized Peters’
formula,
_ — /2 3 [ 1 % ]
=1 A e Ay = | e D> — | 28
v VT Ny Mo =5 VAL, A (28)
Specially if m=1, we obtain (in omitting the suffix 1)
A=>'al, 2\, —Zalz —a3, A =i, (- d=a),
=

==

and hence

= /‘ggé,‘/mj: »A02~/2“1/2“'- (29)

T V=1 X

More specially in case that all ¢,=1, i.e. u;=>'2,=0, as in the case
of the residual sum of least squares, we have A=n, and

a =4/ 2o n=T) .
T

But the absolute mean is

__ 2 f_ 21— /2
V= 1/270_5:L6Xp)‘ T) JI——-‘/;O_’

so that we get #=#, n(n—1), which means that

PR M N (30)

Valn—1) 1 a(n—1)"

the so-called Peters’ formula.

Usually the unbiased estimate of o conveniently calculated from Bessel’s
formula o2=33/(n—1), to be 4=1"Sa3/(n—1). However this is not
correct, because V g2-1-4. It will be rather reaconable to avail the above

.
obtained result a:¢ga;/7z(1z-1) , and to put
T

o S Xl (31)

o , -
21 ' n(n—1)

Gakugei Faculty, Tokushima University.
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According to Fourier’s integral-theorem, we have
00

dtgw AtE-Drceyds , =TT

1 /i
f(x)= 2?}
This follows readily from Fourier’s expansion

HOEE S IFOT LGN
7=0) _;

by writing &f=t, %=dt, and making », [ >,

sy = a|” r@cos sz,

(cf. e.g. Prof. Takagi’s Treatise on Analysis, p. 336).
Or
D W P o it(E-2) ge - 1(7
Fx) = 2n§_wdt‘\mf($)e dg =5

—co oo

whence the relations (3) immediately follow.
Specially, if in a<x<b, f(x)=1, and otherwise f(x)=0, we obtain

" " e Daz =1, in ez, |
T - =0, otherwise.

—o0

e_i’ddz.‘S T dttpceHae
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1. Introduction.

The space considered here is a separable real-Banach space, written Q.
Let us denote points of Q by a, b, x, ... etc.; sets by M, F, ... etc.; and
real numbers by «, ), ... etc.. If there exists § >0 such that U(x; &)~ M,"
as far as non-null, is convex for any positive §<_8, the point x is called
a convex point of M, or M is said to be (locally) convex at ». As M is
always convex at its interior points, the concept of local convexity at @
is of special significance in the case x is a boundary point of M, and so
the convex point of M implies an interior point or boundary point of M.
When M is locally convex everywhere at the boundary, M is said to be
locally convex.

Clearly, although convexity (in large) implies local convexity, the con-
verse is not true. In this paper we impose on the local convex set M the
condition of its arcwise connectedness, by which we mean that every two
points of M can be joined by an arc® lying in M. And yet the convexity
of M does not necessarily follow, but does that of the interior M*‘ of M,
that is, we get the following result.

Theorem. If M is locally convex and arcwise connected, then M' is
convewx.

2. Preliminaries.

The symbols {z,y}, [(«,%], etc. are defined as following.
Letting z(\)=(1—\)z+\y for =x=Fy,

1) By U(x;¢) we mean e-neighborhood of x, that is,
Ez|llz—x| <& ze Q)]
2) The set C is called an arc if it is homeomorphic with the unit closed inte-val [0, 1).
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(o, y} = E[e(n) | for gl real} (g, ) = E[(\)|0- 071,
[w,y]=ELz(\)]0SAs1],  [o9)= EL(V)|0<A"1],
(9] =E[2(\)]0c2A=1],  (2,1) = ELz0) 2517,
(,9) = BL2(\)|A70]

where, of course,

fo, yy={y, x}, (@, y)=(y, ), (2, y]= [y, 2]
(a:,y)Z(y,x), [:U,y):(y,x] ’ (fb’,’]jj:[’]/,ﬂf).
Let @ and b be distinct points of Q and let
c=(1l—a)a+ab .
Lemma 1. Given any & >0, we can find two positive numbers 8, >0,
8y >0 such that {u,v} ~U(c; &)==0 for every u e U(a; 8,) and every v € U(D; &,).
Then it is said that Ula; &) and U(b; 8,) cross Ule; &).

&

Proof. Set BZMW'H“*E}AHag——le’ ‘(v+§—Hm—H|% s

& 1

v = Max. Hl (H— ?H'afbﬂ |

11_0—

For every u, v and ) such that ||u—a ||<8,=¢&/3v, ||v—>b||<8,=¢/33, and
|a—n|<&/3]|a—0b]|, it will be shown that w=(1—X\)u+\v belongs to
Ue; €).

In fact, since |A|<'8 and |1—\|<_v, we have

twv—cu<w1—xinu—an+tx|uw~bn+1a—x|n«—bn

+/3 la-b|l=¢ .

A=

Remark. 1f 0< &< 3-Min.{|la—c]||, ||[b—c]||}, then X satisfies
(A1) a—1) >0 and xa >0. We say that U(a; 6,) and U(b;8,) cross
separately U(e; &) .

Corollary 1. If for any &, 0< &< 2.-Min.{||a—c], ||[b—c]|}, we take
any v end A such that

o0l < 8 =2¢/28, [a—=x|<&/2]a=D]|

where

_ S & | &
B = Max. | « 2a—3] a+2——Ha_bH |
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then U(c; &) contains w=(1—N\)a+ v with )\ satisfyiug both
(A—1)a—1)>0 and ) >0.

It is said that a and U(b; 8,) cross separately Ulc; &).

Lemma 2. Let M be a convex set, M the closure of M. If o€ and
beM, then [a,b) M’ (Cf. [17).

Proof. Suppose that (e¢,b)"CM’'. Then (a,b) would contain ¢ € M‘,
Since ae M’, U(a; &)CM for some & 3:Min.{||b—al|, lc—a|]}. By means
of Lemma 1, we can find positive numbers ¢ and 5, such that U(a; &) is
separately crossed by two mneighborhoods: U(b; ¢) intersecting M, and
U(c; ) intersecting M'.®» Letting 2cU(; )M, z€U(c; )M, and
ye(x,;),q Ula; &) M, we have z€[x,y], contrary .to the convexity of M.

From this lemma we get at once :

Corollary 2. Let M be « convex set, M* its boundary, and, M° its
exterior. If acM! and re€ M*, then (a, ;)CM".

Lemma 3. If [a,b)_M¢ and b is a convex point of M, then there lies
80 such that [a,z) M for eny z€ U ; §) M (Cf. [2]).

Proof. To each x¢€[a,b], there corresponds U(x; &(x)/2) satisfying
the following conditions :

Ulz; &) M for z€[ad),
Ulz; &) A M is convex for o =b.
The system of U(x; &«)/2) for all x €[a,b] covers [a,b]; however, since
(a,b] is compact, [«,b] is covered by a finite system of U,=U(q,; &/2)
(i=1, ... ,n) where &,=¢&(a,) and ¢, =(1—a,)a+a,b (i=1,...,n) (Cf. [3]).
Without loss of generality it may be assumed that
(i) =0, «a,=1, aa;,, (t=1,..,0—-1),
(i) U, U; (i==7), (iil) U, M (i=1,...,n—-1),
(iv) U nU;;==0 (i=1,...,n—1).

As easily seen from them, we obtain

l&—=¢&] - |, —a;| for i:-7,

3) We denote by M’ the complementary set of M
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especially

l&—&| L E+E .
a,—a v for {=jx1,
2la—p) <4 <g]a=p] 7

and so the interval [0, 1] is covered by the system of open sets:

Vi =V &/2 ) a=b )= B0 M= | <&/2 ] a=b|] (i=1, ..., 7).

Let S = Mm 8, ,
=1,
where
8, = 81/2/31: ’
Bt:Max.{‘ai———ei— , ‘ai+~i_ } (i=1,...,0).
2|la— 2|la—0]|

This & will be what we desire here.

Setting w(\)==(1—X\)a+\z for any z€ U(b; §) M, Corollary 1 shows
that w(\)€ U(a, ;&) for every A €V,. Furthermore, if we take a real
number £ fulfilling

&
1 _ Cn “n 4 “n-1 n—1
s <& < omtayedy) -

then for any A€[0,£] there exists a positive integer k, i.e., one of
1,2,...,n—1 such that A €V,, in other words, w()\) with any A €[0,&]
belongs to one of U,(i=1,2,... ,n—1); accordingly

[20(0), w(&)] M. (1)

In particular, since w(&)eU,_,~U, C M, w(&) is an interior point of the
convex set U, ~ M.
Then by Lemma 2, it follows that

(w(&),2) T(Uun M) M. (2)
Combining with (1) and (2), we have [«,2)CM'. Thus this lemma has
been proved.

3. The proof of the theorem.

Let ¢ and b be any distinct points of M’. By the assumption « and
b are joined by an arc C in M i.e.,

C=E(z|z=fO\), 0=a<1]C M

where f(\) represents a homeomorphic image of A in M.
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Now, let us define L()\) as following :
L(0) = {a}, L(\) = (a, f(\)) for A=4-0.

Evidently I(0) C M'. Since ¢ is an interior point of M and f(\) is conti-
nuous, for any & >0 there is 3, such that 0< 8,<1, f(B)eU(a; §)_M' for
all B, 0<B<B,. Hence L(B)_M! Then we shall get L(\)CM* for all
A €[0,17, whence the proof of this theorem is to be finished.

Supposing that it is not true, there is one at least )\ yielding L\ M".
First setting

p = inf A, (4)
LM

where . clearly lies in [3,, 1], we shall prove that L(x) i.e.,
Lw) = (a, f()) = [2(») | #(») = (L—p)a+vf() , 0o 1]

contains one at least point of M*. To do this it is sufficient to show that
only L(x){_ M® because really «(v) € M’ for at least every » € [0, &/||a—f(u)|].
Suppose L(u)M'. Since f(u) is a convex point of M, there exists § >0
such that (a,z)CM* for any z€ U(f(x); &) (by Lemma 3) and we take here
particularly z= f(u+ ) such as shows below.

By continuity of f()\), we can select », >0 such that

flp+9)€U(f(n); 8) for every 5 €(-24, 7).

Therefore L (u+ ) C M for every 7€ (-74, 5,), contradicting to the
assumption (4).
Let us denote by », the infinimum of all v for which «(v) € M* ~ L(x);

obviously we have

& i .
Te=7Ca) ]| S <1, 2(v) € M* A L)

and x(v)e M for every v, 0<v<Ty,.
M is convex at x(y,), i.e., U(a(y,); )M is convex for a suitable {; and
i vo—&/ll a—F(p) | <v<vo,
2(») €U(2(vg) ; SIAM' = (U(2(re); E)n M) .
On account of Corollary 2, it follows that
2(E) € Ula(ve); H)AM for all &, v<lE<vo+E/lla—F(p) I
that is, U(a(&y) ; V)TU(2(vy); E)AM° for some v >0 .
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Hence ¢ and U(f(u); o) cross U(a(é,);v) if o >0 is adequately chosen.
On the other hand the continuity of f(x) enables us to obtain f(x—38)€
U(f(p); o) for some 8§ 20; so that ¢ and f(x—38) cross U(a(&,); 7), in other
words, we have L(u—8)~U(x(&,); v)T M, ie., L(p—8){ M, which arrives

at the contradiction to = inf . Therefore L(A)C M’ for all x€[0,1],
LS M
especially, L(1)=(a,b)C_M’. The proof of the theorem has been completed.

We can easily give an example verifying that M is not convex under
the same assumption as the above theorem. For example, let M be a set
of points in the plane with cartesian coordinates (&, ) satisfying

lyl<1 it $=|el<1,
. 1
lw<1 i el
Gakugei Faculty, Tokushima University.
Notes.

(1) By the way, it follows immediately from Lemma 2 that if M is convex M?
is convex. Moreover, it is likewise proved that if M is convex M is so.

(2) Lemma 3 holds even if we let @ be, more generally, a convex point of M.

(3] £ is regular and perfectly separable, because £ is a separable metric space.

Therefore Borel’s covering theorem holds.
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Introduction.

If we consider a complex point in n-dimensional space, that is, whose
coordinates are complex numbers, as a real point in 2n-dimensional space,
we can construct a geometry in complex space. As a particular case of
the above, we can represent the images of real and complex plane curves
and straight lines as real surfaces and planes in 4-dimensional space. In
the first place, we shall describe the important properties of these planes.

$1. Holomorphic planes.

Let us put complex wvariables z!, 22, and complex constants «,, «,, ¥
to al+iyt, a? +iy?, and A,+iB,, A, +1B,, C +1iD, respectively, then we obtain
the equation of a straight line on a real plane, as

a2t a2ty =20 (1)

If we put the real and imaginary part of the above equation to zero,
we have the following equations :
At —Byyt+A,22— B,y +C =0, } (2)
B+ Ayt + Byt + Ayt + D= 0.
These equations define a plane of a special type in 4-dimensional space.
We chall call these planes holomorphic planes and describe their remarkable
properties.

I. Two non-parallel holomorphic planes are not contained in a same

hyperplane.

Let the given two holomorphic planes be
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A @' =Byt + A2* — By +C =0

B+ Ay + B2t + Ay +D =0
A2t — By + 4,22 —B,'y*+C' =0
Ba '+ Ay + B, a?+ A,y* + D' =0 }

7; and

The necessary and sufficient condition that the above two holomorphic
planes are contained in a hyperplane is
A 1 B 1 Az —B 2
B, A, B, A,
All_Blr AZI_BZI
B 1 ! A 1, B 2 ! A 2l

=0 (3)

But the equation (3) may be able to transform to the form
(AlAz"‘B1Bz"’A2A1'+Bz'Bll)2+(Alel+ B,A,—B,A,'—A,B, )} =

It is impossible because these planes are not parallel.

II. Transformations which transform a holomorphic plane to «

holomorphic plane.

We shall look for an affine transformation which transforms a holomor-
phic plane to a holomorphic plane.
Let us consider an affine transformation
2! = @'+ bnyt + 407 + 01y + Ky,
Y = U2 + by Y + Wp00® + bypy” + Koy,
T2 = (3,0 + D51 Yt + A300% + b3 Y% + o,
P2 = @@+ by ¥t + @y + b, 5y% + Ky
If we get the conditions that the above transformation may be transform
a holomorphic plane to a holomorphic plane, we obtain
U1y = bgg, Qg =—D1p, @3, = Dyp, Ay =—b3,,
@y = by1, @y =—D11, @31 =D 41, Gy =—b3;.

Hence such an affine transformation is shown as follows:

Kl

V= @181 — b1y + @122 — b1y + Ky,
Yt = 0@+ a1yt 01527 + gy + Ky, ] (4)

Z? = @5 8" — 031y + W302% — b3, y* + ks,
72 ==b 310 + Q31 Y + 327 + @3,y + Ky
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We shall call this transformation a holomorphic transformation. It is
easily shown that all of the holomorphic transformations form a transfor-
mation group, and that holomorphic planes are invariant under the holomol-
phic transformations. We shall describe some remarkable properties of
holomorphic planes in the followings.

§2. Some remarkable properties on plane complex geometry.

I. To a real or complex point on the plane, there corresponds a real
point in 4-dimensional space.

II. To a real or complex straight line on the plane, there corresponds
a holomorphic plane in 4-dimensional space.

III. To a real point on the plane, there corresponds a point on the
Real Plane, i.e. the locus of real points on the plane, in 4-dimensional
space. The Real Plane is not a holomorphic plane.

IV. Two non-parallel holomorphic planes are not contained in a same
hyperplane. Then two holomorphic planes have one and only one point in
commom.

V. With the Real Plane a holomorphic plane, which represents a
complex straight line, determines one and only one point, and that which
represents a real straight line, determines 2 straight line. Then there is
one and only one real point on a given complex straight line.

VI. The Real Plane and a complex point, i.e. a real point in 4-dimen-
sional space, determine a hyperplane. The holomorphic planes which are
contained in a same hyperplane are all parallel with one another. Then
there is one and only one holomorphic plane which passes through a given
point in the hyperplane. This holomorphic plane determines a straight line
with the Real Plane. Then there is one and only one real straight line
which passes through a given complex point.

§ 3. Isoclinic planes.

We have described in the Scientific Paper of Engineering, Tokushima
University, Vol. 1, 2, No. 1, about the -angles between two planes in 4-
dimensional space. In this paper we shall describe briefly the abstract of
the result.
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Let the equations of the two given planes be

Aga'=0, Ba'=0 (I) and A,/ =0, B/2'=0 (II) (i=1,2,3,4.)
If we use the Gauss’s notation [AB] etc, such as ([ABJ=3>"4,B,(i=1, 2, 3,4.),
we can put [AAJ=[BB]=[A'A"]=[B'B'J=1, [ABJ=[A'B'J=0 without
generality. The intersection of the plane (I) and the hyperplane which con-
taines the plane (II), is a straight line. Then if we rotate the hyperplane
about the plane (II), the straight line of the intersection generates an
elliptic cone about the intersecting point of the planes. Then if we con-
sider the conditions that the straight line generates a circular cone, we

obtain the followings.
(A’B]=[AB"], [AA’]=—[BB'], or [A'B]=—[AB'], [AA"]=[BB'].
In the case of the above, the angles between the two given planes are

determined uniquely, so we define such pairs of planes to Isoclinic Planes.
We shall show some remarkable properties with respect to Isoclinic Planes.

I. Any two holomorphic planes are usualy isoclinic mutually.
Let the equations of the given holomorphic planes be

At — Byt + A2 — By +C =0,
Biat+ Ayt + By + Ayy*+ D =0,
A/at—B 'yt + Aa:— B,y + C' =0,
B\ at+ Ayt + Byt + Ay'yP+ D' =0,

then we have obviously [AA4']=[BB'], [A'B]J=—[AB"],

II. An isoclinic plane to « given holomorphic plane is holomorphic.
Let the equations of the given holomorphic plane be

Alxl'—Bly1+ Azmz _BzyZ — 0,
Biat+ Ayt + B2+ A,y =0,

and that of the plane which is isoclinic to the former be

Al’x1+A2’y1+A3’x2+A4’y2 p— O’
B/a'+ B,'y'+ B,'a*+ B,'y* = 0.

Then if we apply the isoclinic properties, from the condition [A'BJ=[AB’"],
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[AA"J=—[BB'], and [A'B]=—[AB"], [AA"J=[BB'], we get the equations
(A1'+Bz,) A,—(Ay—By)B,+(A;'+B,)A,—(A/—B;')B, =0, ( (I1T) and
(4 +By) Bi+(Ay' —By') Av+(As'+ B.') By+(A/ —By') 4, =0,

(A —By") Ay—(Ay+By) By+(Ay'—B,) A,—(A/+B;') B, =0,

v
(A)—B,")By+(A,’+By/) A+(Ay'—B,)B;+(A/+B;') A, = 0. % S0

These show that the magnitudes in the parenthese satisfy the equation (I).

Then we put
2= (A4, +B,"), a'=(A4,/—B,),
y' = (4,'—B)), y'=(4,'+B)),
a?=(4,/+B,), T  a*=(4,/—B,),
y* = (A/—By'), y* = (A +By').

We see that ¢, o, (i=1, 2.) satisfy the equation (I).
Applying the condition [A'B"J=0, from the above we get the equations

Byx'+ B,/y'+ Bs'a*+ B,/y* = 0, % V)
Azt — Ayt + AJa? — Agly? =0,
A2t + Ayt Ayt + Ay =0, } (V)
Bz/xl_Bllyl +B4Ia;2__B3/y2 pa— 0.

Then the determinant of the coefficients of the equation (I) and (V) or
(VI) is not zero gererally, for the existence of a?, y* satisfying these equa-
tions simultaneously, they must be zero respectively, we get the conditions.

A+ B, =0, A,'—B, =0,
A,—B,’=0, o A, +B, =0,
Ay'+ B, =0, 4;'—B,/ =0,
A/ =By’ =0, A+ By =0,

It is shown that the plane (II) is a holomorphic plane.

The Faculty of Engineering, Tokushima University
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§ 1. Introduction.

By a semigroup is meant a set £ with an operation satisfying the
conditions as following :

(1) To each pair of elements ¢ and b of F, taken in this order, there

corresponds a unique element ab € E.

(2) The operation is associative, i. e., (ab)c=a(bc).

In the present paper we shall not touch upon general theories of-semi-
groups, but mainly discuss how a semilattice® and groupoids® are characte-
rized by ideals or ideal systems in a semigroup.

§2. Ideals.

Definition. A non-empty subset I of a semigroup % is called a right
ideal of E if IECI®; a left ideal of F if FICI; a two-sided ideal if IECI
and EICI; and “ universal > is added if = is taken in place of .

Definition. Principal ideals are defined as following :

(1) I is called a principal »ight ideal if aE=I for some a€l,

(2) I a principal left ideal if Eb—I for some bel,

(3) I a principal two-sided ideal if aE—=Eb—I for some a, b€l.

And ¢ (or b) is called a base of a principal right (left) ideal I, or I .is said
to be generated by « (or b); if a base need be assigned, we denote it by
R(a) or L(b) according as it is right or left, and by I(e) if we need not
distinguish right from left.

E itself is a two-sided ideal. Ideals with the exception of E are to
be called “ proper”’ ones.

The following theorem is very easily shown and it holds even if “left” is

1) See 25 in this paper.
2) See 33.
3) We mean by IE the set of ax where acl, x¢ E.
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taken in place of “ right .

Theorem 1. If I(a €M) are right ideals of « semigroup E, then so are
also the wunion and the intersection of them, as far as the intersection is
non-null.

Consider the right (or left) ideal system " (or ) i.e., the system
composed of all right (left) ideals in £. Such a system is generally a semi-
group—really a semilattice under the operation I, VI, .

By the way, " A is the two-sided ideal system in E. The principal
right (or left) ideal system V" (or B°) can be similarly considered.

§ 3 Groupoids

Two kinds of groupoids (1) (2) are defined by restricting a semigroup.

Definition. A semigroup E is called a right groupoid if the following
conditions are fulfilled. (3]

(1) E contains at least an element ¢ such that there exists a left
identily e depending on «, i.e., ea—a.

(2) Given any two elements ¢ and ¢ in £, we can find some beF
such that ab=c.

E is called a left groupoid if in (1) we take * right identity ” instead of
“left identity ” and in (2) “ba=c ~ instead of “ ab=c ”.

The conditions (1) and (2) are replaced by (1’) and (2).

(1) There is a left identity of E, i.e., an element e such that ex=w
for all € F.

In reality it can be shown that (1) and (2) imply (1). Let ea=a by (1);
this e is nothing but a left identity of E. For, since any ¥ €E is
represented as x=ay for some y e F,

ex = e(ay) = (ea)y = ay==.
It is clear that (1’) impiles (1). Thus (1) and (2) are equivalent to (1')
and (2).

It goes. without saying that a group is a left groupoid as well as a
right groupoid. Now, with respect to the relations between groupoids and
their ideals, we have the following theorem.

Theorem 2. In order that o semigroup E is « right groupoid (left
groupoid), it is necessary and sufficient that E has no proper right (left)
ideal, and has ot least one left (right) principal ideal.

Proof. Suppose that F is a right groupoid. Letting I be any right
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ideal of it, we have xE I F for any ® €I; on the other hand ¥ = F by
the condition (2) of a right groupoid; hence I=FE. Thus we see that there
is no proper right ideal. The cxistence of a principal left ideal follows
easily from (1). In fact Fa is a principal left ideal of .

Next we shall prove the converse of this theorem. Since there exists
no prof)er right ideal, we have, for any a € F, *E=F, which immediately
leads to (2). The condition (1), (consequently (17)), follows® from the
existence of a principal left ideal of . The sufficiency has been completely
proved.

The proof in the dual case is similar, needless to say.

From Theorem 2, we have without difficulty the following :

Theorem 3. In order that o semigroup E is a group, it is mnecessary
and sufficient that E has neither proper right nor proper left ideal.

§4. Idempotency

Let o be an element of a semigroup F. An element z is called idem-
potent if x = axx, and F is called idempotent if all elements of E are
idempotent. In this paragraph we shall assume £ to be an idempotent
semigroup. Then ideals, of course, are all universal.

Lemma 1. If A is a right (left) ideal of E, and B is « right (left)
ideal of A, then B is « vight (left) ideal of E.

Proof. We shall prove it only in the case of “right”. BA is a right
ideal of F. In fact, (BA)E=B(AE)CUBA, and BACB since B is a right
ideal of A ‘; while BCBA because E is idempotent and BCA ; hence B=BA.

.Lemma 2. The following three conditions are equivalent wunder the
assumption of idempotency of F.

(1) R(x)e® and L(z)eJ" for every x€ K.

(ii) R(x)=L{x) for ecvery x € E.

(iii) J=J".

Proof. (i)—(ii) Since F is idempotent, v € R(x) and so FaR(x)
(v R(x)eX), therefore L(x)R(x). In the same way L(xz)DR(x), at last
L{2)=R(x).

(il )—»(iil) For I€I” we have

4) Let L(a) be a principal left ideal of E. By its definition there exists ec E such that
ea--a.
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I=\JR(z)=\/ IL(CU) ey’
xel X €

hence Y'Y ; similarly J™OF’, thus J'=J".
(iii)—(i) It is evident.
Theorem 4. If E is idempotent and JF =, then we have
I(2y) = I(y2) = I() A L(y).
Proof. it is sufficient to show only the formula :
R(zy) = R(yx) = B(x) ~E(y).

If ze R(2) A R(v), then z=xa=yb for some ¢, b € E. Utilizing this repre-

sentation,
z = xa = a(xae) = a(yb) = (2y)b € R(zy),
and so R(2)~R(y)R(2y).
Next, taking z € R(zy), we have
z=(wy)c=wa(yc) € R(x) for some cc F,

and z=(zy)e=(ya')ec (since L{y)=R(y) by Lemma 2.)

=y(x'c) € R(y);
hence R(yx)R(x)AR(y), finally R(x)~R(y)=R(xy). Interchanging x for
¥, B(y) nB(x)=R(yx).

Further, respecting the relations between groupoids and idempotency,
we have the following lemma and theorem.

Lemma 3. In a right (left) groupoid G, (G;), a € G,(G,) is idempotent
if and only if a is a left (right) identity.

Proof. We shall prove it only in the case of G.. Given any idempotent
element @ of the groupoid G,, each y€ G, is formed as y=aex for some
x € G, ; and we have

ay = alex) = (aa)r = ax =y for all y.
It follows that any a € G, is a left identity of G.. The converse is evident.

Theorem 5. A group is idempotent if and only if it consists of only
identity.

Proof. Suppose that G is a group. Lemma 3 and the uniqueness of
identity of a group show that all elements of G are equal. The converse

is trivial.

§ 5. Semilattice.

A semilattice is defined as a commutative, idempotent semigroup (4],
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Clearly this system coincides with a partly ordered set in which any pair
of elements have a least upper bound or join — in fact, y=>a meaning that
xy=y is a partial ordering, and ay is a join of x and y. For example, the
right (or left) ideal system J7(J¢) is an above bounded semilattice under
the operation I,VI,, and I (or &%) includes E as the greatest element.
We can show easily the following lemma and theorem.

Lemma 4. In o semilattice F, b>a if and only if there exists snch c € K
that b=ac.

Theorem 6. Let P be o principal ideal of the semilattice E. P(b)_P(a)
if and only if a<b; accordingly P(a)=P(b) implies a=b, that is, the mapping
xe—P(2) is one-to-one.

By Theorem 6, we get readily the following theorem :

Theorem 7. The principal ideal system P of a semilatlice E forms a
semilattice under the operation P(x)~P(y), and P is isomorphic on E.

Also we have:

Theorem 8. The ideal system of o semilattice forms « lattice uuder the
operations Y and A .

From these theorems, we see that a minimal ideal implies the least
ideal as far as semilattices are concerned; the system of all ideals in ¥
containing 2 forms an above and below bounded lattice in which the principal
ideal P(z) is least.

maximal chain (5). Let F{I,|o €m} be a maximal chain in the ideal
system J" or ¥ of the semigroup F, where m denotes a totally ordered set
having 0 as the least element, and o<+ implies I, DI, and I,—=FE. To any
ideal I of FE, there corresponds at least a maximal chain containing I; of
course we must here assume the axiom of choice (6.

Setting

I'= Nxe1, 1,
G e
I', being non-null, is an ideal of £ by Theorem 1. Furthermore, I'CI, for
every I, (¢ € m) containing « ; and I, DJ, for all I, and each I, (« €m) which
does not contain x, so that I'>I.; I' is comparable with every I, €3,
i.e., I' have to belong to ¥ ; and we can find M=) in m such that I,,,=I'.
This I, is nothing but the least of all ideals I, in % which contain .
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Definition. The mapping (2—I,., ) of the semigroup ¥ into 3§, i.e., on
certain subset of § is called a naturel mapping of E into ¥, which is in
general many to one.

Definition. Let & be the one-sided ideal™ system of the semigroup E.
An iceal A€ is said to be above isolated if either of the following two
holds :

(i) ASC for no Ceg.

(dii) There exists B e such that A=CEB for no C €. If the sign
T is substituted for <, then A is said to be below isolated.

A one-sided ideal I of the semigroup £ is below isolated if and only if
I is the image of a suitable element x € F under the natural mapping of
E into some %. By the way we have readily :

Lemma 5. A principal ideal is below isolated.

Now a semilattice will be characterized by the natural mapping and
the maximal chain.

Theorem 9. Let & be the one-sided ideal system of a semigroup F, and
§ any mazimal chain in X. In order that E is o semilattice, it is necessary
and sufficient that the following conditions are fulfilled.

(1) Fvery below isolated ideal is universal and two-sided.

(2) Ewvery above isolated ideal is two-sided.

(3) The natural mapping of E into F is one-to-one.

Note. The condition (3) is equivalent to (3/).

(3") For each z€FE, I,, —Ii={x}{%, where Ii= \/ /i

A@)<T, TEM

Proof of necessity in Theorem 9.

Assume that E is a semilattice. . The conditions (1) and (2) are clear
because F is idempotent and commutative, and so we shall below prove (3').

1° Letting J=I,,,— I}, the definition of \(z) enables us to obtain that
z¢J and My)=\z) for any ¥, z€J, in other words, I,, is the least ideal
belonging to ¥ which contains all u€J.

2° We shall verify that if J was composed of at least two elements,
it would contradict with the description 1°.

If there exists such an ideal K of I, that J~K:-0 and J{ K, our

5) By one-sided ideal we meah either a right or left ideal.
6) {a} represents the set composed ¢f only a element x.
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purpose is realized.

For, setting L=K I} which is an ideal of ¥ because of Lemma 1, we
have Lz2I. for every >\ since J ~K==0; and have L&ZI,,, since JJK;
L must belong to ¥. The existence of such L in § is in contradiction
with the fact that I,.,, is the least ideal in ¥ which contains u€J ~ K.

3° In case that J is a subsemigroup.

We may assume without the loss of generality that J has a proper ideal
of J. For, if J has none, J is a group by Theorem 3 ; and J contains only
one element by Theorem 5 since J is idempotent.

Now, let M be a proper ideal of J and let N=MVI5. Then N is an
ideal of I,.,.. In fact,

NI, =MVYINJIVI) =MIVMEV LIV MY IE =N,
moreover J AN==0, J{'N ; the problem is reduced to 2°.

4° In case that J is not a subsemigroup.

There lie two (different) elements «, b in J such that ¢b€J, i.e., ab € I}.
Consider the two principal ideals P(«) and P() of E ; we get P(a) ~ P(b)=P(ab)
by Theorem 4, but since ab € I and I is an ideal, P(ab)_I}; hence b € P(a).
Put H=P(¢)VI{. Then J~ H=-0, JO-H ; the problem is also reduced to 2°.

We have thus proved that J=f{a} in all cases; thus the proof of
necessity has been completed.

proof of sufficiency.

1° Proof of idempotency.

Conversely assume that (1), (2), and (3) are satisfied. By (3’) we have
& €1,y =I%V {2} where & € If, The universality (1) of I,, enables us to
find some y and z in I,,, such that a=y2z, but it is impossible to find
neither y nor z in I* since I} is two-sided (by (2)). Hence y=z=2a ; we have
x=a2 for all x, thereby the idempotency of F is establiched.

2° preparation

In order to prove commutativity, we shall prepare the following lemma :

Lemma 6. Let P(«) and P(y) be one-sided principal ideals of E. If any
S satisfies (3), then P(2)=P(y) implies x=y.

Proof. The assumption (3) and Lemma 5 lead immediately to this
lemma.

3°  Proof of commutativity
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It follows from (1) that R(z)€ X" and L(z)€ ¥". Since E is idempotent,
R(z)=LIL(x) for every x € E by Lemma 2; and I(xy)=I(y2) by Theorem 4 ;
therefore xy=yx for every 2 € £ and y€ E (by Lemma 6.).

Thus the proof of Theorem 9 is completely finished.

Corollary. In the semilattice E, ¢ minimal (or least) ideal of E, if
exists, consists of only one element.

Proof. The proof of the corollary is established in that of Theorem 9
in which we may let I* be null.

Gakugei Faculty, Tokushima University.

Notes.

(1) K. Masuda : Notes on groups (Japanese),

Zenkoku Sizyo Sugaku Danwakai, v. 2, No. 11, pp. 338--341, 1948.
He called our groupoid S-group.

(2] K. Shoda: The general theory of Algebra (Japanese), Kyoritsusha, pp. 66—
69, 1947.

(3] If E is finite, the condition (1) is needless, that is, (1) follows from (2) and
associative law. It is, however, doubtful for me, whether this holds in the case that £
is infinite. If (1) can be omitted, Theorem 2 should be more simple.

[4) G. Birkhoff : Lattice theory, revised edition, (Amer. Math. Soc. Collog. Publ.
25) p. 18, 1948. ‘‘ Semilattices” are due to Fr. Klein, Math. Zeits. 48 (1943), but
I have not read it.

(5] C is called a maximal chain if (i) Cis a chain in J, and (ii) for any ideal
I €3—C, I is incomparable to any ideal belonging to C. With respect to chains, see

G. Birkhoff : Lattice theory, Chapt. 111, 1948.

(61 G. Birkhoff : Lattice theory p. 42, 1948.
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ABSTRACTS

An Example of a Non-normal
Distribution Function with
a; =0, a,=3

By Yoshikatsu WATANABE

Since Pearson’s types of frequency

functions are limited as solutions of

dy_  x—mo__
dx a+bx-+tcx?’
v3=0, ¢4=3 is decided to be the normal

S S SR BN € St Dl
distribution y oy expl PP

However as the world of statistics are

the only function with

broad, and there exist many functions

dy _ A+Bx+Cx2+
dx~ atbxtexit -

belong to no Pearson’s type, the above

such that and

conclusion is not reasonable. Though this
fact is described in any becok on statis-
tics, I have never seen its actual example.
I have found accidentally the following

example :

y = = iy

The inte-
gral computation being somewhat trouble-

which gives «3=0 and «,=3.

some, it may serve as a good exercise
on the theory of a complex variable.

Really putting

k
Je= 5€<Ti2?45éd2’ k=0,1,2,3,4,

and making use of the method of the

residuals we obtain the following results :

Jo= 41/2, J1=J3=0, J2= 74—7

2
5
e -, and the mean=0.
3

c=1/Jo =

o2 =cl2=Jo/Jo= (‘,
oy = cJafot = JoJs]J2? =

Gakugei Faculty,
Tokushima University.

aS’:O ’

On a Relation between the Radius
of Analyticity and th_e Radius of
Bound of the Power Series

By Isae SHiMODA

Let E, E’ be two complex Banach
spaces. An E’ valued function 7,(x)
defined on E is an homogeneous poly-
nomial of degree #. Then E’ valued func-

tion > (%) is an power series defined
n=0
on E. The radius of analyticity © of

i () is given by the following equality
n=0

sup lim ¥ sup sup | Z,(x) 1| =

2€k M>o0 TEG T

where k is a set of all compact set G

extracted from the set x| =1.

The radius of bound A of 720 fa(x) is

T1im Vsup | () 1| = l

nyco  @i=1 /

From this, we can easily see the follow-

ing relation between X and t

Theorem. Generally A< t, but if the
complex Banach spaces is compact, then
L=

In a complex #—dimensional spaces,

G

I

=7

Gakugei Faculty,
Tokushima University.
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On Some Proverties of
Semiconvex Sets

By Takayuki TAMURA

We shall introduce the concept of semi-
convexity and arrange some remarkable
Let x, v
be points of the finite dimensional real
Banach space 2. By the notations (x, ¥J,

properties of semiconvex sets.

<~ >

[x,y]) we mean that
(x,y)=E((1-2)x+iy|0<A1<1],
<« >
(x,y)=E((1-2Dx+Ay|2 <0, A>=1].
Definition. S is called a semiconvex
set if one at least of the following condi-
tions holds:

() £ICS  Gi) 0%5ICS
for each pair of x,y belonging to S.

The above definition is equivalent to
the following one.

Definition. If (x,2JNS is connected
for any x €S and any z €S’ (the comple-
mentary set of S), then S is called a
semiconvex set.

As easily seen from the definition,
bounded semiconvex sets are convex ; and
if S is semiconvex S’ is also so. Semi-
convexity is invariant by the linear trans-
formation x—>§x+a where ¢ is a definite
point in £ and § a constant number.
Furthermore it is shown that the boundary
S* of the semiconvex set S coincides
with that of the interior S* of S.

Definition. A point x is called a direct
point of M if x is a convex point? of
M as well as M’; x an inner convex
point of M if a convex point of M?; x
an inner non-convex point of M if not so ;
x an inner direct point of M if a convex

point of M as well as M't.

In case that a semiconvex set S has
no other than an inner direct point, its
structure is very simple, that is, S* con-
sists of at most two hyperplanes.

In other cases, we have some remark-
able results as following.

Lemma. Let o, @1, s be linearly in-
dependent three points of the semiconvex
set S in which dim S>2. 1If (o, @& )_S
and (o, as){_S, then every point of
SAR(0,a,a2)® is joined with one at
least of 0, @1, @2 by an arc contained in S.

Theorem. If there is one at least
boundary point » of S such that

(i) r is an inner non-convex point of S,

(ii) » is an arcwise connected point®’

of S,
then S is arcwise connected.

Theorem. The semiconvex set consists
of at most two components.*

Theorem. If A and B are components
of an arcwise disconnected semiconvex
set S, then Af and B! are both convex.

These theorems enable us to conclude
that connectedness and arcwise connec-
tedness are equivalent as far as semi-
convex sets are concerned.

Furthermore we have:

Theorem. If a semiconvex set S is

disconnected, then S’ is connected.

Example. If we let

f(x, ) =ax?+20xy + B2+ 2pux+22y +7
with real coefficients, and P be the
totality of (x,y) in the plane satisfying
f(x,¥)>0, P is obviously a semiconvex

domain.

Gakugei Faculty,
Tokushima University.
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Remark.

1) Cf. p. 25 in this Journal.

2) By R(o, a), az) we mean the minimal
linear subspace containing o, @;, and a;.

3) If for any € >0 U(r;e)~S is arcwise
connected, 7 is called an arcwise connected
point.

4) By a component is meant a maximal

arcwise connected subset.

On a Machine Solving Algebraic
Equations of Higher Order
with Real Coefficients

By Yoshio HAYASHI

Abstracted from Scientific Papers of
Faculty of Eagineering, Tokushima
Univ., (Japanese) Vol. 2, No. 1, 1950,
pp. 61—53.

If one puts z =7r¢!% as the solution of
the following algzbraic equation of n-th
order with real coefficients :

(1) e +ep-—12"" 1+ +uz+u =0,

then z corresponds to a point oa the
Gauss-plane with pdlar coordinates (7, 6),

while z2, 2%, ..., 2"

correspond to points
whose coordinates are respectively (#2, 26),
(3, 30), ..., (¥, nf).

Suppose one hangs weights proportional

to the coefficients «; at the points which
correspond to z¢, then each w2 represents
the moment of gravity of the weight «:
concerning the origin, and the equation
(1) becomes the condition that these
moments are in equilibrium, that is, if
the weisht «; is put at the point (», 6)
and other weights are put respectively
at their right positions, the system of
weights keeps its level plane, while the
wrong position of «; will incline it.

So one can solve the equation (1) by
the machine the structure of which is as
follows ; there are mn-bars, the weights
move radically keeping their distances
from the rotation center of the bars in
the ratio of »:#72:--- 7™

And this system of bars and weights
inclines or in equilibrium according to
the motions of bars and weights.

The position (7, 0) of weight «1 shows
the solution of the equation (1), when the
system is in equilibrium. The mechanism
of these actions is made of some pairs
of circular plates and some cylinders.
And the curves y =x? are carved on the
surfaces of the cylinders.

The Faculty of Engineering,
Tokushima University.
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MISCELLANEOUS NOTES

Tokushima Daigaku

Sugaku Danwakai

We hold the meeting, *“ Sugaku Danwa-
kai”’, generally once a month at the
Mathematical Institute of Gakugei Facul-
ty, Tokushima University. The addresses
given in the meetings for the last year
are as following.

The 1st Meeting
May 1, 1950
Yoshio Hayashi, On a machine solving
algebraic equations of higher order.
Takayuki Tamura, On local convexity
of sets.

Takashi Hirajima, An invariant integra-
tion in a compact topological group.
Takaharu Maruyama, The angles of
intersection of planes in 4-dimensional

space.
Isae Shimoda, Analytic functions in
Banach spaces.

Yoshikatsu Watanabe, w?-distribution.

The 2nd Meeting
June 3, 1950
Seiichi Taga, On numerical calculations
by the Punched card method.
Mamoru Matsuoka, On noted mathema-
ticians of Tokushima-ken, seen from

historical stand point.

The 3rd Meeting
July 18, 1950
Takeo Igarashi, The chronological table
of mathematical history.
Takayuki Tamura, On semilattices.

The 4th Meeting
September 30. 1950

Takaharu Maruyama, Geometry in com-
plex-spaces.

Isae Shimoda, A note on power series in
abstract spaces (1).

Yoshikatsu Watanabe, A proof of Peters’
formula.

Takayuki Tamura, On cubic matrices.

The 5th Meeting
November 30, 1950

Isae Shimoda, On power series in abstract
spaces (I1).
Takayuki Tamura, On ideals in universal

semigroups (1).

The 6th Meeting
December 19, 1950

Yoshikatsu Watanabe, The generalization
of Student’s ratio (1).
Takaharu Maruyama, Geometry of path.

The 7th Meeting
January 25, 1951

Mamoru Matsuoka, Graphical meaning
of imaginary points in some algebraic
equations.

Takayuki Tamura, On ideals in universal
semigroups (2).

Yoshikatsu Watanabe, The generalization

of Student’s ratio (2).
The 8th Meeting
February 22, 1951
Takashi Hirajima, On the fixed point

theorem.
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The 9th Meeting
March 15, 1951

Takaharu Maruyama, Geometry in Com-
plex-spaces. (the relations with unitary
spaces. )

Takayuki Tamura, Notes on semigroups.

The 10th Meeting
April 27, 1951

Yoshio Hayashi, The second fundamental

quantities of regular surfaces.

Isae Shimoda, On a relation between the
radius of analyticity and the radius
of bound of power series.

The 11th Meeting
May 25, 1951

Seiichi Taga, A theorem in the theory
of integral equations.

Takayuki Tamura, On a relation between
finiteness and idempotency of semi-

groups.
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