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§ 1. Introduction.

By a semigroup is meant a set £ with an operation satisfying the
conditions as following :

(1) To each pair of elements ¢ and b of F, taken in this order, there

corresponds a unique element ab € E.

(2) The operation is associative, i. e., (ab)c=a(bc).

In the present paper we shall not touch upon general theories of-semi-
groups, but mainly discuss how a semilattice® and groupoids® are characte-
rized by ideals or ideal systems in a semigroup.

§2. Ideals.

Definition. A non-empty subset I of a semigroup % is called a right
ideal of E if IECI®; a left ideal of F if FICI; a two-sided ideal if IECI
and EICI; and “ universal > is added if = is taken in place of .

Definition. Principal ideals are defined as following :

(1) I is called a principal »ight ideal if aE=I for some a€l,

(2) I a principal left ideal if Eb—I for some bel,

(3) I a principal two-sided ideal if aE—=Eb—I for some a, b€l.

And ¢ (or b) is called a base of a principal right (left) ideal I, or I .is said
to be generated by « (or b); if a base need be assigned, we denote it by
R(a) or L(b) according as it is right or left, and by I(e) if we need not
distinguish right from left.

E itself is a two-sided ideal. Ideals with the exception of E are to
be called “ proper”’ ones.

The following theorem is very easily shown and it holds even if “left” is

1) See 25 in this paper.
2) See 33.
3) We mean by IE the set of ax where acl, x¢ E.
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taken in place of “ right .

Theorem 1. If I(a €M) are right ideals of « semigroup E, then so are
also the wunion and the intersection of them, as far as the intersection is
non-null.

Consider the right (or left) ideal system " (or ) i.e., the system
composed of all right (left) ideals in £. Such a system is generally a semi-
group—really a semilattice under the operation I, VI, .

By the way, " A is the two-sided ideal system in E. The principal
right (or left) ideal system V" (or B°) can be similarly considered.

§ 3 Groupoids

Two kinds of groupoids (1) (2) are defined by restricting a semigroup.

Definition. A semigroup E is called a right groupoid if the following
conditions are fulfilled. (3]

(1) E contains at least an element ¢ such that there exists a left
identily e depending on «, i.e., ea—a.

(2) Given any two elements ¢ and ¢ in £, we can find some beF
such that ab=c.

E is called a left groupoid if in (1) we take * right identity ” instead of
“left identity ” and in (2) “ba=c ~ instead of “ ab=c ”.

The conditions (1) and (2) are replaced by (1’) and (2).

(1) There is a left identity of E, i.e., an element e such that ex=w
for all € F.

In reality it can be shown that (1) and (2) imply (1). Let ea=a by (1);
this e is nothing but a left identity of E. For, since any ¥ €E is
represented as x=ay for some y e F,

ex = e(ay) = (ea)y = ay==.
It is clear that (1’) impiles (1). Thus (1) and (2) are equivalent to (1')
and (2).

It goes. without saying that a group is a left groupoid as well as a
right groupoid. Now, with respect to the relations between groupoids and
their ideals, we have the following theorem.

Theorem 2. In order that o semigroup E is « right groupoid (left
groupoid), it is necessary and sufficient that E has no proper right (left)
ideal, and has ot least one left (right) principal ideal.

Proof. Suppose that F is a right groupoid. Letting I be any right
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ideal of it, we have xE I F for any ® €I; on the other hand ¥ = F by
the condition (2) of a right groupoid; hence I=FE. Thus we see that there
is no proper right ideal. The cxistence of a principal left ideal follows
easily from (1). In fact Fa is a principal left ideal of .

Next we shall prove the converse of this theorem. Since there exists
no prof)er right ideal, we have, for any a € F, *E=F, which immediately
leads to (2). The condition (1), (consequently (17)), follows® from the
existence of a principal left ideal of . The sufficiency has been completely
proved.

The proof in the dual case is similar, needless to say.

From Theorem 2, we have without difficulty the following :

Theorem 3. In order that o semigroup E is a group, it is mnecessary
and sufficient that E has neither proper right nor proper left ideal.

§4. Idempotency

Let o be an element of a semigroup F. An element z is called idem-
potent if x = axx, and F is called idempotent if all elements of E are
idempotent. In this paragraph we shall assume £ to be an idempotent
semigroup. Then ideals, of course, are all universal.

Lemma 1. If A is a right (left) ideal of E, and B is « right (left)
ideal of A, then B is « vight (left) ideal of E.

Proof. We shall prove it only in the case of “right”. BA is a right
ideal of F. In fact, (BA)E=B(AE)CUBA, and BACB since B is a right
ideal of A ‘; while BCBA because E is idempotent and BCA ; hence B=BA.

.Lemma 2. The following three conditions are equivalent wunder the
assumption of idempotency of F.

(1) R(x)e® and L(z)eJ" for every x€ K.

(ii) R(x)=L{x) for ecvery x € E.

(iii) J=J".

Proof. (i)—(ii) Since F is idempotent, v € R(x) and so FaR(x)
(v R(x)eX), therefore L(x)R(x). In the same way L(xz)DR(x), at last
L{2)=R(x).

(il )—»(iil) For I€I” we have

4) Let L(a) be a principal left ideal of E. By its definition there exists ec E such that
ea--a.



40 Takayuki TAMURA

I=\JR(z)=\/ IL(CU) ey’
xel X €

hence Y'Y ; similarly J™OF’, thus J'=J".
(iii)—(i) It is evident.
Theorem 4. If E is idempotent and JF =, then we have
I(2y) = I(y2) = I() A L(y).
Proof. it is sufficient to show only the formula :
R(zy) = R(yx) = B(x) ~E(y).

If ze R(2) A R(v), then z=xa=yb for some ¢, b € E. Utilizing this repre-

sentation,
z = xa = a(xae) = a(yb) = (2y)b € R(zy),
and so R(2)~R(y)R(2y).
Next, taking z € R(zy), we have
z=(wy)c=wa(yc) € R(x) for some cc F,

and z=(zy)e=(ya')ec (since L{y)=R(y) by Lemma 2.)

=y(x'c) € R(y);
hence R(yx)R(x)AR(y), finally R(x)~R(y)=R(xy). Interchanging x for
¥, B(y) nB(x)=R(yx).

Further, respecting the relations between groupoids and idempotency,
we have the following lemma and theorem.

Lemma 3. In a right (left) groupoid G, (G;), a € G,(G,) is idempotent
if and only if a is a left (right) identity.

Proof. We shall prove it only in the case of G.. Given any idempotent
element @ of the groupoid G,, each y€ G, is formed as y=aex for some
x € G, ; and we have

ay = alex) = (aa)r = ax =y for all y.
It follows that any a € G, is a left identity of G.. The converse is evident.

Theorem 5. A group is idempotent if and only if it consists of only
identity.

Proof. Suppose that G is a group. Lemma 3 and the uniqueness of
identity of a group show that all elements of G are equal. The converse

is trivial.

§ 5. Semilattice.

A semilattice is defined as a commutative, idempotent semigroup (4],
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Clearly this system coincides with a partly ordered set in which any pair
of elements have a least upper bound or join — in fact, y=>a meaning that
xy=y is a partial ordering, and ay is a join of x and y. For example, the
right (or left) ideal system J7(J¢) is an above bounded semilattice under
the operation I,VI,, and I (or &%) includes E as the greatest element.
We can show easily the following lemma and theorem.

Lemma 4. In o semilattice F, b>a if and only if there exists snch c € K
that b=ac.

Theorem 6. Let P be o principal ideal of the semilattice E. P(b)_P(a)
if and only if a<b; accordingly P(a)=P(b) implies a=b, that is, the mapping
xe—P(2) is one-to-one.

By Theorem 6, we get readily the following theorem :

Theorem 7. The principal ideal system P of a semilatlice E forms a
semilattice under the operation P(x)~P(y), and P is isomorphic on E.

Also we have:

Theorem 8. The ideal system of o semilattice forms « lattice uuder the
operations Y and A .

From these theorems, we see that a minimal ideal implies the least
ideal as far as semilattices are concerned; the system of all ideals in ¥
containing 2 forms an above and below bounded lattice in which the principal
ideal P(z) is least.

maximal chain (5). Let F{I,|o €m} be a maximal chain in the ideal
system J" or ¥ of the semigroup F, where m denotes a totally ordered set
having 0 as the least element, and o<+ implies I, DI, and I,—=FE. To any
ideal I of FE, there corresponds at least a maximal chain containing I; of
course we must here assume the axiom of choice (6.

Setting

I'= Nxe1, 1,
G e
I', being non-null, is an ideal of £ by Theorem 1. Furthermore, I'CI, for
every I, (¢ € m) containing « ; and I, DJ, for all I, and each I, (« €m) which
does not contain x, so that I'>I.; I' is comparable with every I, €3,
i.e., I' have to belong to ¥ ; and we can find M=) in m such that I,,,=I'.
This I, is nothing but the least of all ideals I, in % which contain .
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Definition. The mapping (2—I,., ) of the semigroup ¥ into 3§, i.e., on
certain subset of § is called a naturel mapping of E into ¥, which is in
general many to one.

Definition. Let & be the one-sided ideal™ system of the semigroup E.
An iceal A€ is said to be above isolated if either of the following two
holds :

(i) ASC for no Ceg.

(dii) There exists B e such that A=CEB for no C €. If the sign
T is substituted for <, then A is said to be below isolated.

A one-sided ideal I of the semigroup £ is below isolated if and only if
I is the image of a suitable element x € F under the natural mapping of
E into some %. By the way we have readily :

Lemma 5. A principal ideal is below isolated.

Now a semilattice will be characterized by the natural mapping and
the maximal chain.

Theorem 9. Let & be the one-sided ideal system of a semigroup F, and
§ any mazimal chain in X. In order that E is o semilattice, it is necessary
and sufficient that the following conditions are fulfilled.

(1) Fvery below isolated ideal is universal and two-sided.

(2) Ewvery above isolated ideal is two-sided.

(3) The natural mapping of E into F is one-to-one.

Note. The condition (3) is equivalent to (3/).

(3") For each z€FE, I,, —Ii={x}{%, where Ii= \/ /i

A@)<T, TEM

Proof of necessity in Theorem 9.

Assume that E is a semilattice. . The conditions (1) and (2) are clear
because F is idempotent and commutative, and so we shall below prove (3').

1° Letting J=I,,,— I}, the definition of \(z) enables us to obtain that
z¢J and My)=\z) for any ¥, z€J, in other words, I,, is the least ideal
belonging to ¥ which contains all u€J.

2° We shall verify that if J was composed of at least two elements,
it would contradict with the description 1°.

If there exists such an ideal K of I, that J~K:-0 and J{ K, our

5) By one-sided ideal we meah either a right or left ideal.
6) {a} represents the set composed ¢f only a element x.
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purpose is realized.

For, setting L=K I} which is an ideal of ¥ because of Lemma 1, we
have Lz2I. for every >\ since J ~K==0; and have L&ZI,,, since JJK;
L must belong to ¥. The existence of such L in § is in contradiction
with the fact that I,.,, is the least ideal in ¥ which contains u€J ~ K.

3° In case that J is a subsemigroup.

We may assume without the loss of generality that J has a proper ideal
of J. For, if J has none, J is a group by Theorem 3 ; and J contains only
one element by Theorem 5 since J is idempotent.

Now, let M be a proper ideal of J and let N=MVI5. Then N is an
ideal of I,.,.. In fact,

NI, =MVYINJIVI) =MIVMEV LIV MY IE =N,
moreover J AN==0, J{'N ; the problem is reduced to 2°.

4° In case that J is not a subsemigroup.

There lie two (different) elements «, b in J such that ¢b€J, i.e., ab € I}.
Consider the two principal ideals P(«) and P() of E ; we get P(a) ~ P(b)=P(ab)
by Theorem 4, but since ab € I and I is an ideal, P(ab)_I}; hence b € P(a).
Put H=P(¢)VI{. Then J~ H=-0, JO-H ; the problem is also reduced to 2°.

We have thus proved that J=f{a} in all cases; thus the proof of
necessity has been completed.

proof of sufficiency.

1° Proof of idempotency.

Conversely assume that (1), (2), and (3) are satisfied. By (3’) we have
& €1,y =I%V {2} where & € If, The universality (1) of I,, enables us to
find some y and z in I,,, such that a=y2z, but it is impossible to find
neither y nor z in I* since I} is two-sided (by (2)). Hence y=z=2a ; we have
x=a2 for all x, thereby the idempotency of F is establiched.

2° preparation

In order to prove commutativity, we shall prepare the following lemma :

Lemma 6. Let P(«) and P(y) be one-sided principal ideals of E. If any
S satisfies (3), then P(2)=P(y) implies x=y.

Proof. The assumption (3) and Lemma 5 lead immediately to this
lemma.

3°  Proof of commutativity
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It follows from (1) that R(z)€ X" and L(z)€ ¥". Since E is idempotent,
R(z)=LIL(x) for every x € E by Lemma 2; and I(xy)=I(y2) by Theorem 4 ;
therefore xy=yx for every 2 € £ and y€ E (by Lemma 6.).

Thus the proof of Theorem 9 is completely finished.

Corollary. In the semilattice E, ¢ minimal (or least) ideal of E, if
exists, consists of only one element.

Proof. The proof of the corollary is established in that of Theorem 9
in which we may let I* be null.

Gakugei Faculty, Tokushima University.

Notes.

(1) K. Masuda : Notes on groups (Japanese),

Zenkoku Sizyo Sugaku Danwakai, v. 2, No. 11, pp. 338--341, 1948.
He called our groupoid S-group.

(2] K. Shoda: The general theory of Algebra (Japanese), Kyoritsusha, pp. 66—
69, 1947.

(3] If E is finite, the condition (1) is needless, that is, (1) follows from (2) and
associative law. It is, however, doubtful for me, whether this holds in the case that £
is infinite. If (1) can be omitted, Theorem 2 should be more simple.

[4) G. Birkhoff : Lattice theory, revised edition, (Amer. Math. Soc. Collog. Publ.
25) p. 18, 1948. ‘‘ Semilattices” are due to Fr. Klein, Math. Zeits. 48 (1943), but
I have not read it.

(5] C is called a maximal chain if (i) Cis a chain in J, and (ii) for any ideal
I €3—C, I is incomparable to any ideal belonging to C. With respect to chains, see

G. Birkhoff : Lattice theory, Chapt. 111, 1948.

(61 G. Birkhoff : Lattice theory p. 42, 1948.



