ON A RELATION BETWEEN LOCAL CONVEXITY AND ENTIRE CONVEXITY

Bv

Takayuki Tamura

(Received Sept. 28, 1950)

1. Introduction.

The space considered here is a separable real-Banach space, written Ω . Let us denote points of Ω by a,b,x,... etc.; sets by M,E,... etc.; and real numbers by $\alpha,\lambda,...$ etc.. If there exists $\delta>0$ such that $U(x;\varepsilon) \cap M,^{1)}$ as far as non-null, is convex for any positive $\varepsilon \leq \delta$, the point x is called a convex point of M, or M is said to be (locally) convex at x. As M is always convex at its interior points, the concept of local convexity at x is of special significance in the case x is a boundary point of M, and so the convex point of M implies an interior point or boundary point of M. When M is locally convex everywhere at the boundary, M is said to be locally convex.

Clearly, although convexity (in large) implies local convexity, the converse is not true. In this paper we impose on the local convex set M the condition of its arcwise connectedness, by which we mean that every two points of M can be joined by an arc^{2} lying in M. And yet the convexity of M does not necessarily follow, but does that of the interior M^i of M, that is, we get the following result.

Theorem. If M is locally convex and arcwise connected, then M^i is convex.

2. Preliminaries.

The symbols $\{x,y\}$, [x,y], etc. are defined as following. Letting $z(\lambda) = (1-\lambda)x + \lambda y$ for $x \neq y$,

¹⁾ By $U(x; \varepsilon)$ we mean ε -neighborhood of x, that is, $E[z \mid ||z-x|| < \varepsilon, z \in \Omega]$

²⁾ The set C is called an arc if it is homeomorphic with the unit closed interval (0, 1).

$$\begin{split} \{x,y\} &= E \Big[z(\lambda) \, \Big| \, \begin{array}{ll} \text{for all real} \\ \text{numbers } \lambda \end{array} \Big], & (x,y) = E \left[z(\lambda) \big| \, 0 < \lambda < 1 \right], \\ [x,y] &= E \left[z(\lambda) \big| \, 0 \leq \lambda \leq 1 \right], & [x,y) = E \left[z(\lambda) \big| \, 0 \leq \lambda < 1 \right], \\ (x,y) &= E \left[z(\lambda) \big| \, 0 < \lambda \leq 1 \right], & (x,y) = E \left[z(\lambda) \big| \, \lambda > 1 \right], \\ (x,y) &= E \left[z(\lambda) \big| \, \lambda < 0 \right], \end{split}$$

where, of course,

$$\begin{aligned} \{x,y\} &= \{y,x\} \;, \quad (x,y) = (y,x) \;, \quad [x,y] = [y,x] \\ (x,y) &= (y,x) \;, \quad [x,y) = (y,x] \;, \quad (x,y] = [y,x) \;. \end{aligned}$$

Let a and b be distinct points of Ω and let

$$c = (1-\alpha)a + \alpha b$$
.

Lemma 1. Given any $\varepsilon > 0$, we can find two positive numbers $\delta_1 > 0$, $\delta_2 > 0$ such that $\{u,v\} \cap U(c;\varepsilon) = 0$ for every $u \in U(a;\delta_1)$ and every $v \in U(b;\delta_2)$. Then it is said that $U(a;\delta_1)$ and $U(b;\delta_2)$ cross $U(c;\varepsilon)$.

Proof. Set
$$\beta = Max. \left\{ \left| \alpha - \frac{\varepsilon}{3 \| a - b \|} \right|, \left| \alpha + \frac{\varepsilon}{3 \| a - b \|} \right| \right\},$$

$$\gamma = Max. \left\{ \left| 1 - \alpha + \frac{\varepsilon}{3 \| a - b \|} \right|, \left| 1 - \alpha - \frac{\varepsilon}{3 \| a - b \|} \right| \right\}.$$

For every u, v and λ such that $||u-a|| < \delta_1 = \varepsilon/3\gamma$, $||v-b|| < \delta_2 = \varepsilon/3\beta$, and $||\alpha-\lambda|| < \varepsilon/3 ||a-b||$, it will be shown that $w = (1-\lambda)u + \lambda v$ belongs to $U(c; \varepsilon)$.

In fact, since $|\lambda|{<}\beta$ and $|1{-}\lambda|{<}\gamma$, we have

$$\| w - c \| \leq |1 - \lambda| \| u - a \| + |\lambda| \| v - b \| + |\alpha - \lambda| \| a - b \|$$

$$< \gamma \cdot \frac{\varepsilon}{3\gamma} + \beta \cdot \frac{\varepsilon}{3\beta} + \frac{\varepsilon}{3\|a - b\|} \cdot \| a - b \| = \varepsilon .$$

Remark. If $0 < \varepsilon < 3 \cdot Min.\{ \| a - c \|, \| b - c \| \}$, then λ satisfies $(\lambda - 1)(\alpha - 1) > 0$ and $\lambda \alpha > 0$. We say that $U(a; \delta_1)$ and $U(b; \delta_2)$ cross separately $U(c; \varepsilon)$.

Corollary 1. If for any ε , $0 < \varepsilon < 2 \cdot Min.\{ || a-c ||, || b-c || \}$, we take any v and λ such that

$$\parallel v-b\parallel <\delta_2=arepsilon/2eta$$
 , $\mid lpha-\lambda\mid$

where

$$\beta = Max. \left\{ \left| \alpha - \frac{\varepsilon}{2 \| a - b \|} \right|, \left| \alpha + \frac{\varepsilon}{2 \| a - b \|} \right| \right\},$$

then $U(c; \varepsilon)$ contains $w = (1-\lambda)a + \lambda v$ with λ satisfying both $(\lambda-1)(\alpha-1) > 0$ and $\lambda \alpha > 0$.

It is said that a and $U(b; \delta_2)$ cross separately $U(c; \varepsilon)$.

Lemma 2. Let M be a convex set, \overline{M} the closure of M. If $a \in M^i$ and $b \in \overline{M}$, then $[a, b) \subset M^i$ (Cf. [1]).

Proof. Suppose that $(a,b) \subset M'$. Then (a,b) would contain $c \in M'$. Since $a \in M'$, $U(a;\varepsilon) \subset M$ for some $\varepsilon \subset 3 \cdot Min.\{||b-a||, ||c-a||\}$. By means of Lemma 1, we can find positive numbers ξ and η , such that $U(a;\varepsilon)$ is separately crossed by two neighborhoods: $U(b;\xi)$ intersecting M, and $U(c;\eta)$ intersecting M'. Letting $x \in U(b;\xi) \cap M$, $z \in U(c;\eta) \cap M'$, and $y \in (x,z) \cap U(a;\varepsilon) \subset M$, we have $z \in [x,y]$, contrary to the convexity of M.

From this lemma we get at once:

Corollary 2. Let M be a convex set, M^* its boundary, and, M^e its exterior. If $a \in M^i$ and $r \in M^*$, then $(a, \vec{r}) \subset M^e$.

Lemma 3. If $[a,b) \subset M^i$, and b is a convex point of M, then there lies $\delta > 0$ such that $[a,z) \subset M^i$ for any $z \in U(b;\delta) \cap M$ (Cf. [2]).

Proof. To each $x \in [a, b]$, there corresponds $U(x; \varepsilon(x)/2)$ satisfying the following conditions:

$$\begin{array}{ll} U(x\,;\,\varepsilon(x)) \subset M & \text{for} \quad x \in [a,b)\,, \\ \\ U(x\,;\,\varepsilon(x)) \, \cap \, M & \text{is convex for} \ x = b\,. \end{array}$$

The system of $U(x; \varepsilon(x)/2)$ for all $x \in [a, b]$ covers [a, b]; however, since [a, b] is compact, [a, b] is covered by a finite system of $U_i = U(a_i; \varepsilon_i/2)$ $(i=1, \ldots, n)$ where $\varepsilon_i = \varepsilon(a_i)$ and $a_i = (1-\alpha_i)a + \alpha_i b$ $(i=1, \ldots, n)$ (Cf. [3]). Without loss of generality it may be assumed that

- (i) $\alpha_1 = 0$, $\alpha_n = 1$, $\alpha_i < \alpha_{i+1}$ (i = 1, ..., n-1),
- $(ii) \quad U_i \subset U_j \quad (i = j) \; , \qquad (iii) \quad U_i \subset M \quad (i = 1, \ldots, n-1) \; ,$
- (iv) $U_i \wedge U_{i+1} = 0$ (i = 1, ..., n-1).

As easily seen from them, we obtain

$$rac{\mid \mathcal{E}_i - \mathcal{E}_j \mid}{2 \mid \mid a - b \mid} < \mid \alpha_i - \alpha_j \mid \text{ for } i = j$$
 ,

³⁾ We denote by M^\prime the complementary set of M

especially

$$\frac{\left|\left.\mathcal{E}_{i}-\mathcal{E}_{j}\right.\right|}{2\left\|\left.a-b\right.\right\|} < \left|\left.\alpha_{i}-\alpha_{j}\right.\right| < \frac{\left.\mathcal{E}_{i}+\mathcal{E}_{j}\right.}{2\left\|\left.a-b\right.\right\|} \quad \text{for} \quad i=j\,\pm\,1\;,$$

and so the interval [0, 1] is covered by the system of open sets:

$$V_i \equiv V_i(\alpha_i; \varepsilon_i/2 \parallel a-b \parallel) = E[\lambda \mid |\lambda - \alpha_i| < \varepsilon_i/2 \parallel a-b \parallel] \quad (i = 1, \dots, n).$$

Let

$$\delta = \underset{i=1,\ldots,n}{Min.} \delta_i$$
,

where

$$\begin{split} \delta_i &= \left. \varepsilon_i / 2\beta_i \right. , \\ \beta_i &= \operatorname{Max.} \left. \left\{ \left| \left. \alpha_i - \frac{\varepsilon_i}{2 \parallel a - b \parallel} \right| \right. , \quad \left(i = 1, \dots, n \right) . \right. \right. \end{split}$$

This δ will be what we desire here.

Setting $w(\lambda) \equiv (1-\lambda)a + \lambda z$ for any $z \in U(b; \delta) \cap M$, Corollary 1 shows that $w(\lambda) \in U(a_i; \mathcal{E}_i)$ for every $\lambda \in V_i$. Furthermore, if we take a real number \mathcal{E} fulfilling

$$1 - \frac{\varepsilon_n}{2 \| a - b \|} < \xi < \alpha_{n-1} + \frac{\varepsilon_{n-1}}{2 \| a - b \|},$$

then for any $\lambda \in [0, \xi]$ there exists a positive integer k, i.e., one of $1, 2, \ldots, n-1$ such that $\lambda \in V_k$, in other words, $w(\lambda)$ with any $\lambda \in [0, \xi]$ belongs to one of $U_i(i=1, 2, \ldots, n-1)$; accordingly

$$[w(0), w(\xi)] \subset M^i.$$
 (1)

In particular, since $w(\xi) \in U_{n-1} \cap U_n \subset M$, $w(\xi)$ is an interior point of the convex set $U_n \cap M$.

Then by Lemma 2, it follows that

$$(w(\xi), z) \subset (U_n \cap M)^i \subset M^i. \tag{2}$$

Combining with (1) and (2), we have $(a, z) \subset M^i$. Thus this lemma has been proved.

3. The proof of the theorem.

Let a and b be any distinct points of M^i . By the assumption a and b are joined by an arc C in M i.e.,

$$C = E[z \mid z = f(\lambda), 0 \le \lambda \le 1] \subset M$$

where $f(\lambda)$ represents a homeomorphic image of λ in M.

Now, let us define $L(\lambda)$ as following:

$$L(0) = \{a\}, \quad L(\lambda) = (a, f(\lambda)) \text{ for } \lambda = 0.$$

Evidently $L(0) \subset M^i$. Since a is an interior point of M and $f(\lambda)$ is continuous, for any $\varepsilon > 0$ there is β_0 such that $0 < \beta_0 < 1$, $f(\beta) \in U(a; \varepsilon) \subset M^i$ for all β , $0 < \beta < \beta_0$. Hence $L(\beta) \subset M^i$. Then we shall get $L(\lambda) \subset M^i$ for all $\lambda \in [0,1]$, whence the proof of this theorem is to be finished.

Supposing that it is not true, there is one at least λ yielding $L(\lambda) \subset M^i$. First setting

$$\mu = \inf_{L(\lambda) \subset M^i} \lambda , \qquad (4)$$

where μ clearly lies in $[\beta_0, 1]$, we shall prove that $L(\mu)$ i.e.,

$$L(\mu) = (a, f(\mu)) = [x(\nu) | x(\nu) = (1-\nu)a + \nu f(\mu), 0 < \nu < 1]$$

contains one at least point of M^* . To do this it is sufficient to show that only $L(\mu) \subset M^i$ because really $x(\nu) \in M^i$ for at least every $\nu \in [0, \mathcal{E}/||a-f(\mu)||]$. Suppose $L(\mu) \subset M^i$. Since $f(\mu)$ is a convex point of M, there exists $\delta > 0$ such that $(a, z) \subset M^i$ for any $z \in U(f(\mu); \delta)$ (by Lemma 3) and we take here particularly $z = f(\mu + \eta)$ such as shows below.

By continuity of $f(\lambda)$, we can select $\eta_0 > 0$ such that

$$f(\mu + \eta) \in U(f(\mu); \delta)$$
 for every $\eta \in (-\eta_0, \eta_0)$.

Therefore $L(\mu + \eta) \subset M^i$ for every $\eta \in (-\eta_0, \eta_0)$, contradicting to the assumption (4).

Let us denote by ν_0 the infinimum of all ν for which $x(\nu) \in M^* \cap L(\mu)$; obviously we have

$$rac{\mathcal{E}}{\mid\mid a-f(\mu)\mid\mid}$$
 \leq u_0 $<$ 1 , $x(
u_0)$ \in M^* $_{\cap}$ $L(\mu)$

and

$$x(\nu) \in M^{\iota}$$
 for every ν , $0 < \nu < \nu_0$.

M is convex at $x(\nu_0)$, i.e., $U(x(\nu_0);\zeta) \cap M$ is convex for a suitable ζ ; and if $\nu_0 - \zeta/\|a - f(\mu)\| < \nu < \nu_0$,

$$x(\nu) \in U(x(\nu_0)\,;\,\varsigma\,)_{\, \frown}\, M^i = (U(x(\nu_0)\,;\,\zeta)_{\, \frown}\, M)^i$$
 .

On account of Corollary 2, it follows that

$$x(\xi) \in U(x(\nu_0); \zeta) \cap M^e$$
 for all ξ , $\nu_0 < \xi < \nu_0 + \zeta / ||a - f(\mu)||$,

that is, $U(x(\xi_0); \gamma) \subset U(x(\nu_0); \zeta) \cap M^e$ for some $\gamma > 0$.

Hence a and $U(f(\mu); \sigma)$ cross $U(x(\xi_0); \gamma)$ if $\sigma > 0$ is adequately chosen. On the other hand the continuity of $f(\mu)$ enables us to obtain $f(\mu - \delta) \in U(f(\mu); \sigma)$ for some $\delta > 0$; so that a and $f(\mu - \delta)$ cross $U(x(\xi_0); \gamma)$, in other words, we have $L(\mu - \delta) \cap U(x(\xi_0); \gamma) \subset M^e$, i.e., $L(\mu - \delta) \subset M$, which arrives at the contradiction to $\mu = \inf_{L(\lambda) \subset M^i} \lambda$. Therefore $L(\lambda) \subset M^i$ for all $\lambda \in [0, 1]$, especially, $L(1) = (a, b) \subset M^i$. The proof of the theorem has been completed.

We can easily give an example verifying that M is not convex under the same assumption as the above theorem. For example, let M be a set of points in the plane with cartesian coordinates ((x, y)) satisfying

$$\begin{array}{ll} \mid y \mid \leq 1 & \text{ if } \quad \frac{1}{3} \leq \mid x \mid \leq 1 \ , \\ \mid y \mid < 1 & \text{ if } \quad \mid x \mid < \frac{1}{3} \ . \end{array}$$

Gakugei Faculty, Tokushima University.

Notes.

- (1) By the way, it follows immediately from Lemma 2 that if M is convex M^i is convex. Moreover, it is likewise proved that if M is convex \overline{M} is so.
 - (2) Lemma 3 holds even if we let a be, more generally, a convex point of M.
- (3) \mathcal{Q} is regular and perfectly separable, because \mathcal{Q} is a separable metric space. Therefore Borel's covering theorem holds.