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If the observed values of a quantity z be z,,...,z, and the mean value
z=3"z;/n, then the deviations are z,—z=uw;, j=1,...,n. The unbiased
estimate of the mean square deviation is given by the well-known Bessel’s

formula ot = a3/(n-1). (1)
However its demonstrations are found hardly legitimate in classical
books on least squares, except some fews, e.g. A.F. Craig’s elegant proof

given in Bulletin of the American Math. Soc., 1936, vol. 42. He pointed
out that (1) means nothing but the expectation of the sum of squares

Sai=V, ie EV)=(mn-1)0o2, (2)

and proved (2) under the assumption that a distributes normally. In the
present note a similar process is applied to generalize Peters’ formula in
regard to the mean absolute deviation ¢

9= Nla,| 1/ w(n—1).

1° Characteristic. As well known, the distribution function (density
of probability) f(x) as well as its characteristic g(¢) are defined as follows?

;

foy=go| eg(tait, gt)=|" e*f()ia. (3)

Or, in case of many variables,

f(xl’ vee 3y xm) - (le)m‘ A j e_Lg(tlﬁ see 3 tm)dtl cee dtm ’ 1

9Ly, ... ,t,,,,)-—:r r e f(ay, ..., @)%,y ... A, , J (4)

where L =izt +--- +i2,,t,, .

1> See the annexed References.
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Now, for a single valued continuous function w=U(y,...,%,), Where
@,,..., %, are assumed to be independent, the distribution function F(u)

shall be given by
F(u)du=j' § f@, oo s w2)dR, .. daty
D

where @, ...,x, should be taken over the domain D that satisfies the
inequality u<U(z,,...,%,)<u+du. To avoid this inconvenience, let us
multiply, after Cauchy’s devise, both sides by the function®

o u+du .
| at| g

27 w

which becomes =1 in < u, u+du_>, and otherwise =0. Then the domain
of integration can be extended to the whole n-dimensional space E,, s0O

o u+an > o o0
dtS e-ziing y eitUf(x,, ..., x,)dx, ... dz, .

— 00 (3 el — 0o

1
that Fu)du —2—71’j

Or putting the inner integral

r r EVF(Xy, ..., T, )dXy ... da, = G(T), (5)
we get
F(u)du = ir [e'”“du] G(t)dt ,
27) o
hence
Flu)= L j T et G (6)
27) _o

Thus G(t) gives the characteristic of F(u). Furthermore letting
w, = U@y, ..., %), k=1,2,...,m, (m<n),

the distribution function F(u,,...,u,) shall be defined by
Fdu, ... dum:j gf(wl, o de . de,
D o

where D denotes such a domain that w,<U,<u,+dw,, k=1,...,m. Here
again repeating Cauchy’s devises m times, and putting as the characteristic

0

Gty ... ,tm):j [ Ef(@y s 2,)d, . AT s (7)

2) Cf. the annexed References (*).
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where 0=it,U, +it, U, +--- +it,U,,, we obtain
o 1 © ] . ) ) )
FUy een s Up) = 76 =5 e\ e7"G(Ey, .., E ) L dE, . (8)
2z e J e
2> In our case, assuming that a distributes normally

oy — 1 {_a%}
f(&)——Vé}}_anpl 257} (9)

under the conditions that
= > a2, k=1,...,m, and u, (= u)=2|xv1 , (10)
V=1 V=1

where 1<m<mn, and all the coefficients are real, the characteristic in
accordance with (7) is given by

co

€xXp %itlul Rl itm+1um+ll f(xl’ vee s wn)dxl see dwn s

G(thn- Jth-l):j ""

v —oo

where f is determined from (9) to be

. . 1 v/9.2 — ST 2
f(@y, ..., &) = O Fmo) exp{ V/20 K V—§m~,.
Hence we obtain
- 1 ©0 o
G(Tys e s bpey) =~ g ‘ edw, ... dx, ,
/ " J 7
(l 27‘[0-) —co -0 } (11)
mt 1
where O =1 > tu,—V/2:2 .
=1
In order to perform the integration, we write
J— 1 ! > y 2 2 4/ - 2
6= — 9 3 r,—to (8‘1+tm+1) +o ('S‘J+tmn"l)
257 xy 0
5 3 e —iot(a- )| +ots 2! (12)
20_ i )\ v 7Y m+1 m*l S
where SN=— i‘alvt‘, . (13)
=1

So that (11) becomes

G(tl’ UCIORR ) m+1) [[ l/2 [I eXp l 2 (S +tm+ ) % +J exp l 2 ('5 )11.4-1)2;] ’
. (14)
where J={lexp = L [o itz b foa, (15)

The integrals (15) can be found by utilizing Cauchy’s integral theorem to be
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/ . S"Csvi‘lmi—l) ot2l2

w/%o-:i: to dt ,

0

so that (14) may be transformed into
n 2 ) 7
G(tyeee s Epsy) :V[JJl exp %—2 (s\;+t,,,+1)} lcosh (0'28‘,tm+1)+7—2=7[ <exp

(__ _% 028~,t,,,+1>g°<s"+t’"”>et2/2dt— exp < —%028yt1,,+1>j6<sv - l'm+1>et2/zdt)] . (16)
0 4]

In particular letting ¢,.,=0, we obtain as the characteristic of the
combined distributions function ®(u; ..., %,),

Gty ... st 0) :1] exD{—%fss} Eexp%—g;Q} . (17)
Since the numbers considered are all real

Q= ésy zk,:i:l 21 g Uy bty = LXL] Dutyts
is a positive definite Hermite form (Bt, t), so that the matrix B=(byu)
can be transformed into a diagonal one A by taking an adequate ortho-
gonal matrix C=(c¢y) SO as C’'BC=A : or in other words, by the orthogonal

transformation {=Cz: t,:chmzk, we obtain

Q = Sz} (>0 except when all z,=0),
=1

where the coefficients are all >0, and the jacobian J:aﬁu o000 ﬁm)zl'

a(zl’ ‘:- > Zm)
Thus we get
2 m
Gty .. » 1 0) = exp =% Shrat] (18)
L 24
and by (8) the corresponding distribution function becomes
1 (= .. —7q! -
D(Upy e s Uyy) = (_2_75)’_"’5% S»wexp§ L 5 detl ... dty,
_ 1 2 (7 expl——""0!
- (Zn)’”g_w Shwexpl L 9 Qsdz1 e dz, (19)

m
where L=1iXtu, =123 Sleuzy =1 202, and vy= Dlcul, .
=1 3 k I3 l

Now that the multiple integral in (19) might be decomposed into a product
of the form

m o 2 )
g 21;5 exp i— %()\.zz% +i;vlz;>} dz; s (20)
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the integration could be performed by availing Cauchy’s integral theorem,
and we get finally

my

1
VA e A (V 270"

D2y e, Um) =

exp{—sts 33( Bewne) /. 2D

=1

In particular, if w;=:--=u,,=—0, we have
®0,...,0)=1/1"A, ...\, V7 2m0)". (22)

3° The expectation of >'|a,|=u. Let F(u,,...,u,,u) be the combined
distribution function of «=>1|%,|, and «,(k=1,...,m) given in (10), and
let us find the expectation of u, when u,,...,u, are assumed to be fest.
Here, since the compound probability for wu,,...,u,, is ®(uy,...,u,) du, ...
du,,, while the compound probability for u,,...,u, and w is F(u,, ..., %,, ©)
du; ... du,,du, the relative probability becomes F/®, and accordingly the
required expectation can be given by

u = Sugdu , (23)

where the integration should be extended over all the possible values of
u(==0) as far as w,, ..., u, preserve the given fest values. But in virtue of
(4), the characteristic G(¢;, ... , t,4y) Of F(uy, ..., u,, %) is given by

Gty vn s by bmsr) :Sw Sw expglL+z‘utm+1);qu1 o dudu,

where L=—i ft;ul. Whence we get
=1

(SG

o (o) . F
T =\ | twe' ddudu,... du,, ,
atm+1>l‘m+1=0 S..oc jkm q) e ¢ u”

which becomes after substitution of (23)

oG S"" S“’ o g
=) =\ luy ... du,, .
atm+1>o B e’ ddu, ... du,

—c0

Therefore inversely we get by (4)

iad = (_ZiTF) S e”‘<azzcil\/0dtl ... dt,, . (24)

On the other hand we have by (16)

G:VZ_-Z gv(tm+1) >
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oS
[8%)

where ¢,(%,.,) denotes the v-th factor in (16), and consequently

2 ”m,
g,(O) = eXp g—%s.ﬂg s 'Q‘/ - 2 a’l‘)tl >
P i=1

and 95(0)= iaw,/?:[l—crsv eXD< 72:28“;)} ! ’z/zdt]
(a?,i > zg,(O) exp( Cal 2 su> .

This wvalue being substituted in (24), we ought to integrate it, which
is somewhat troublecome. However if the first m conditions of (10) be
linear homogeneous, that is, if u;=—---=u,,=0, then we can perform further
integrations. Really, form the result just obtained together with (22), we get

B L/Xl 7\1 O_n+1 2 n (Soo [_gﬁ( ]
u ————1/27 - ;zji? s_ exp 5 Q— > dt, ... dt,,

—“V g exp Q) Vet } 5 (25)

Let us evaluate the multiple integrals in the above large bracket, (i)
and (ii) say. In order to facilitate the integral (i), we must adopt another
orthogonal transformation {=C,{, so that the expression in the exponent,
which is also a positive definite Hermite form, becomes

. -0

.

Q‘,:Q“'Sa 2 9(.L —_— 2 Za’kuaﬂu)t tl - 2 Xllgl 2

(S84

and after integrations we get
SR (g Ve vms it (26)

In regard to (ii), we utilize at first the before mentioned transformation
t=0C%, so that @Q=>31\;22, and s,=> @, {;=>d,z,, where d, denotes the
l l A

vl-element of the matrix d=a’c. Integrating by parts, we obtain

m d%’l " oo 2 m m 2 l
(ii)=¢ Z g S exp {— = [Z\sz (Zd"kz‘) ] dz, ... dz,, .
=1 )\az —oo k=1 5

Here the expression in the exponent becomes

Eﬁ:(su v —dogpdy) s (8, = Kronecker’s delta)

by a third orthogonal transformation z:(}ffg*, and after integration, we get
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1 /2:_ m m d %L

(i) = e A (27)

ﬂl/
Substituting (26) and (27) in (25), we get, as the generalized Peters’
formula,
_ — /2 3 [ 1 % ]
=1 A e Ay = | e D> — | 28
v VT Ny Mo =5 VAL, A (28)
Specially if m=1, we obtain (in omitting the suffix 1)
A=>'al, 2\, —Zalz —a3, A =i, (- d=a),
=

==

and hence

= /‘ggé,‘/mj: »A02~/2“1/2“'- (29)

T V=1 X

More specially in case that all ¢,=1, i.e. u;=>'2,=0, as in the case
of the residual sum of least squares, we have A=n, and

a =4/ 2o n=T) .
T

But the absolute mean is

__ 2 f_ 21— /2
V= 1/270_5:L6Xp)‘ T) JI——-‘/;O_’

so that we get #=#, n(n—1), which means that

PR M N (30)

Valn—1) 1 a(n—1)"

the so-called Peters’ formula.

Usually the unbiased estimate of o conveniently calculated from Bessel’s
formula o2=33/(n—1), to be 4=1"Sa3/(n—1). However this is not
correct, because V g2-1-4. It will be rather reaconable to avail the above

.
obtained result a:¢ga;/7z(1z-1) , and to put
T

o S Xl (31)

o , -
21 ' n(n—1)

Gakugei Faculty, Tokushima University.
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According to Fourier’s integral-theorem, we have
00

dtgw AtE-Drceyds , =TT

1 /i
f(x)= 2?}
This follows readily from Fourier’s expansion

HOEE S IFOT LGN
7=0) _;

by writing &f=t, %=dt, and making », [ >,

sy = a|” r@cos sz,

(cf. e.g. Prof. Takagi’s Treatise on Analysis, p. 336).
Or
D W P o it(E-2) ge - 1(7
Fx) = 2n§_wdt‘\mf($)e dg =5

—co oo

whence the relations (3) immediately follow.
Specially, if in a<x<b, f(x)=1, and otherwise f(x)=0, we obtain

" " e Daz =1, in ez, |
T - =0, otherwise.

—o0

e_i’ddz.‘S T dttpceHae



