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1. G. Birkhoff presented the following problem in his book™ :
Problem 7. What are the consequences of weakening L 1 to

UL =aNa
and I. 4 to

aulzny)=an(xzvy)?

In this note we shall discuss the structure of the system on the results
of weakening L 1 to

rUX=2Nx
and I 4 to
sv(zny)=an(xwvz).

Such a system is called a latticoid below.

Types of latticoids are seemed to be very complicated, and we cannot
yet determine them, but in the special case (called simple) we schall give
all types by means of the corresponding lattice (denoted as «(L)) and a
set of cardinal numbers.

Latticoids, above all, simple latticoids are seemed to be the most
natural generalization of lattices, with respect to several aspects.

2. A set L of elements a, b, c,... which satisfies the following five
conditions, is called a latticoid :

(0) Two binary operations v and n are defined to each ordered pairs
a, b of L:

a,beL imply evbeL and eanbel,

(1) eve=ana,

(2) avb=bvua and eanb=bna,

*. G. Birkhoff ; Lattice Theory p. 18, 1948.
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(3) (evdb)vue=av(buc), and (end)ne=an(bnec),

(4) av(anbd)=an(ave).

Note that the last condition (4) means two elements av(anbd) and
an(awd) are always equal, and do not depend upon b.

Put
pla) =ave=ana,

ala)=aJland)=an(avec).
Lemma 1.
(1) ola)=aXpla)=avavae=ananae=ay(ana)=an(aa).
(2) Let p(a) be a polynomial of a of degree n, which is greater than
or equal to 3, then we have
»(e) = o(a),

(3) eXola)=c(a),

(4) o(a)yXo(a)=o(a),

(5) o(o(a))=o(a),

(6) o(axb)=c(a)Xa(b)=0c(a)=<Xb=axXqa(D).

(3), (4) and (5) are the special cases of (2).

Proof.

(1) By the definition of p(e) and o(a),

(3) ave(a)=av(en(eva))=qd(a) (the definition of o(a)).
Dually we have ano(a)=o(a),

(2) By the (n—4) iterations of (3).

(4) and (5) are only special cases of (2).

(6) olavb)=(aud)v({(avd)nd)=abyud(b)=a\d(d).
In the same way, we have

o(avudb)=o(a)ub,

and,
o(aub)=o(a(avd)) (By (5).)
= co(a\va(d))
= o(a)\v (D).
Hence

a(aud)=a(a)vo(d)=cdla)vd=ava(D).
Dually, we have
aland)=cola)N () =ocla)nb=0an a(b).
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Theorem 1. The sublatticoid «(L) of L is « lattice, where
(L) =(o(a); a€L).

Proof. o(L) is a subset of L, so o(L) satisfies the conditions (2) and
(3) of the lattice. The preceding lemma shows that o(L) also satisfies the
another conditions (0), (1) and (4) of the lattice.

Theorem 1. (L) is the greatest latlice of all sublatticoids of L.

Proof. If L' is a lattice contained in L, then o(L/)=L'. Now L'L
implies o(L')Zo(L). Hence L'=o(L'")o(L).

Theorem 1. A latticoid L is o lattice, if and only if

L=o(L).

Proof. 1f L=o(L), then L -is a lattice (Theorem 1.). Conversely, if
L==¢(L), then L cannot be a lattice, for o(L) is the greatest lattice
contained in L (Theorem 1').

Theorem 2. The mapping o:a—o(a) of L onto o(L) (or into L) is @
lattice homomorphism in the sense that

(@ Xb) = o(a)<a(b).

Proof. DBy the lemma 1, (6).
The mapping o yields a partition of L, such that ¢ and b belong to
the same class, if and only if o(a¢)=0o(D).
In the partition by the mapping o, we shall denote the class which
contains «€ L as @ i.e.,
6= (x; o) =o(a), x € L)

We can easily see that
L2 p(L) 2 p*(L) = o(L),
where
p*(L) = p(p(L)).

Theorem 3. Let a latticoid L be lattice homomorphic with a latlice L'.
Then the lattice (L) is lattice homomorphic with L'.

Proof. Let f be the lattice homomorphic mapping of a latticoid L
onto a lattice L’. Then we have

flo(a)Xa(b)) = f(a(@))X f(a(D))

for o(L) is a subset of I.
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Hence f gives a lattice homomorphism of «(L) with L'.

Theorem 3'. Let « lotticoid L be lattice isomorphic with o lattice L.
Then L must be o lattice which is isomorphic with L.

Proof. o(L) is lattice homomorphic with L’ by the Theorem 3. And
this homomorphism must be a one-tc-one mapping. This means that (L)
is lattice isomorphic with L’. But L is lattice isomorphic with L’. Then
L is lattice isomorphic with o(L) by the mapping ¢—o(e). Hence L=o(L).
Therefore by the Theorem 1’ we can conclude that L is a lattice which
is isomorphic with L’.

Theorem 4.
xve=2x implies &= o(x),

and dually
zne=ux implies x= o).
Proof. 1f
UG =2,
then,
T=ave=2avavae=2avaeveve=2zdo(e)=cwVva)=x)

for TuaG=xa.

In the same way, we have x=o(x), when & e==x.

3. A latticoid L will be called simple, if for any two elements «, b€ L,
always a<Xb € o(L).

Lemma 2. If a latticoid L is simple, then

@b = o(a)Xb = aXo(b) = o(a)Xo(b) = o(a)XD).

A latticoid L will be called latticoid homomorphic with a latticoid L/,
if there exists a mapping f of L onto L/, such that

flo(aXb))=a(f(a)X (D))

In this case f is called a latticoid homomorphism of L with L. If f is a
one-to-one mapping, then the term homomorphism is replaced by isomorphism.
Theorem 5. For any latticoid L, there exists a simple latticoid L', with
which L is latticoid isomorphic.
Proof. A slight modification of definitions of v and n of L, such that

avb=a(aub),

and
aNb=c(anb)
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yields a new latticoid L’ with two operations v and A. It is easy to that
L is latticoid isomorphic with L/, and L’ is a simple latticoid.
Theorem 6. If « latticoid L is latticoid isomorphic with both simple
latticoids L' and L', then L' and L' are lattice isomorphic with each other.
Proof. 1If L is latticoid isomorphic with both L’ and L'/, by mappings
f, and f,, we have for each element pair «, b€ L,

(@)X F(0)=o(ffa)=Xfi b)) (For, L' and L" are both simple.)
= f{a(a)Ra(b))
= fi(a(@’XD)) (i=12)

Hence the mapping g=/f,f,"*: fi(¢)—fy(a), a € L, gives a lattice isomorphism
of L’ with L”, that is, I’ and L'’ are lattice isomorphic with each other.

Remark. It can easily be led by the above theorem, that the two
notions, lattice isomorphism and latticoid isomorphism, are coincides, so
far as we shall concern with simple latticoids.

A multiplicity m, of an element ¢ of L is the cardinal number of the
class @ of L.

Theorem 7. If any lattice L, and a set of cardinal number m, corres-
ponding to each element a € L are given, there exists a simple latticoid L/,
such that o(L') is lattice isomorphic with L and the multiplicity of each
element o(a') € (L") is m, corresponding to a, where « is a lattice isomorphic
image of o(a').

Proof. Take any element « of L, and construct a set @, which contains
@, and has cardinal number m,.

Suppose @ and p have no intersection, if a=}b, and let L’ be the set
union of @ for all ¢ of L.

Then L' forms a simple latticoid with operations

=y = axb,
where
rea, Yeb,

and
L’ 2 (}'(Ll) = L.

It is obvious that the multiplicity of each element x € a, is m,.
Theorem 8. A simple latticoid L is determined up to lattice isomorphism

by means of the lattice o(L) and « set of multiplicity of each element of o(L).
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Proof. Let L,and L, be two simple latticoids, and o(L;) and o(L,) be
lattice isomorphic with each other. Moreover let the multiplicity of each
element of o(L,) and that of corresponding element of o(L,) be the same.
The assumption of this theorem enables us to extend the lattice isomorphic
mapping between o(L,) and o(L;) to a lattice isomorphic mapping between
whole L, and L,, naturally :

if A1y, O € (L), @y €o(Ly),

then the cardinal number of @, and G, are the same.

Thus we can construct a one-to-one mapping between @, and Gy sO «: L0

@, correspond to a,.
This extended mapping between L, and L, must be a lattice isomorphism
between them :

if X1y, Y1OYy, then o(@)oo(8,), o(y1)eoo(Ys).

Therefore @, Xy = (1) X (y1)0(23) X 0(Y,) = 2 XYe.

A slight modification of the proof of the preceding theorem leads the
following.

Theorem 9. A latticoid L is completely determined wup to latticoid
isomorphism by means of the lattice o(L) and a set of multiplicity of each
element of o(L).
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