ON THE BEHAVIOUR OF POWER SERIES ON THE BOUNDARY OF THE SPHERE OF ANALYTICITY IN ABSTRACT SPACES

By

Isae Shimoda

(Received Dec. 20, 1950)

In classical analysis there exists a singular point at least on the circle of convergence of the power series, but this is not true generally in the case of the power series in complex-Banach-spaces. In this paper we shall investigate a necessary and sufficient condition for power series in complex-Banach-spaces to be analytic at all points on the boundary of the sphere of analyticity.

Let E and E' be two complex-Banach-spaces and an E'-valued function $h_n(x)$ defined on E be a homogeneous polynomial of degree n. Then the radius of analyticity of the power series $\sum_{n=0}^{\infty} h_n(x)$ exsists, which is written by τ^* . The sphere $||x|| < \tau$ is called the sphere of analyticity of the power series $\sum_{n=0}^{\infty} h_n(x)$.

Theorem 1. In order that $\sum_{n=0}^{\infty} h_n(x)$ is analytic at all points on the boundary of the sphere of analyticity, it is necessary and sufficient that

$$\overline{\lim}_{n\to\infty} \sqrt[n]{\sup_{x\in G} \|h_n(x)\|} < \frac{1}{\tau} \tag{1}$$

for an arbitrary compact set G extracted from the set ||x||=1.

Proof. Let $\sum_{n=0}^{\infty} h_n(x)$ be analytic at all points on $||x|| = \tau$. If a compact set G extracted from ||x|| = 1 exists which stisfies the following equality

$$\overline{\lim}_{n\to\infty}\sqrt[n]{\sup_{x\in G}\|h_n(x)\|}=\frac{1}{\tau}$$
,

we have

$$\frac{1}{\tau + \mathcal{E}_i} < \sqrt[n]{\sup_{x \in G} \|\dot{h}_{n_i}(x)\|} \tag{2}$$

^{*)} Isae Shimoda, On power series in abstract spaces, Mathematica Japonicae Vol. 1, No. 2.

for a sequence of positive numbers $\varepsilon_1 > \varepsilon_2 > \dots > \varepsilon_n > \dots$, which tends to zero, and n_i which corresponds to ε_i , where $i=1,2,\dots,n,\dots$. Since G is compact, there exists x_i in G which satisfies

$$\sup_{x \in G} \|h_{n_i}(x)\| = \|h_{n_i}(x_i)\|.$$

Then we can select from $\{x_i\}$ a subsequence which converges to x_0 , of course $x_0 \in G$. In order not to change notation we shall suppose simply that the sequence $\{x_i\}$ itself converges to x_0 .

Put $(\tau + \varepsilon_i) x_i = y_i$ and $\tau x_0 = y_0$, then y_i converges to y_0 . From (2), we have

$$1 < \|h_{n_i}(y_i)\|. \tag{3}$$

where i=1, 2, 3,

Let M be a compact set composed of $y_0e^{i\theta}$, where $0 \le \theta \le 2\pi$. Since $\sum\limits_{n=0}^{\infty}h_n(x)$ is analytic on M, we can find a finite system of neighbourhoods U_j of $y_0e^{i\theta_j}$ ($j{=}1,\,2,\ldots,n_0$) such that $\sum\limits_{j=1}^{n_0}U_j$ covers M and $\|\sum\limits_{n=0}^{\infty}h_n(y)\|$ $\le N$ for $y\in\sum\limits_{j=1}^{n_0}U_j$. Now we choose two small positive numbers δ and ρ , so that $y\alpha\in\sum\limits_{j=1}^{n_0}U_j$, where $\|y-y_0\|\le\rho$ and $|\alpha|=1+\delta$. Then we have

$$||h_n(y)|| = \left\| \frac{1}{2\pi i} \int_{|\alpha|=1+\delta}^{\infty} \frac{\sum_{n=0}^{\infty} h_n(\alpha y)}{\alpha^{n+1}} d\alpha \right\| \leq \frac{N}{(1+\delta)^n}$$
 (4)

for n=1, 2, ... and $||y-y_0|| < \rho$.

Since y_i converges to y_0 , (4) contradicts to (3). This shows that the condition (1) is necessary.

Let y_0 be an arbitrary point on $||y||=\tau$. Suppose that there exists a sequence $\{y_n\}$ which converges to y_0 and satisfies the following inequalities

$$\overline{\lim}_{n \to \infty} \sqrt[n]{\|h_n(y_i)\|} \ge 1 - \varepsilon_i \tag{5}$$

for $i=1,2,\ldots$, where a sequence of positive numbers $\{\mathcal{E}_n\}$ converges to zero with $\mathcal{E}_{n+1} < \mathcal{E}_n$. Put $\frac{y_i}{\|y_i\|} = x_i$ and $\{x_i\} = G$. Then G is a compact set on $\|x\| = 1$. Now we assume (1). Then there exists a positive number \mathcal{E} such that $\lim_{n \to \infty} \sqrt[n]{\sup_{x \in G} \|h_n(x)\|} \le \frac{1}{\tau + 3\mathcal{E}}$. From this, we have $\|h_n(x_i)\| \le \frac{1}{(\tau + 2\mathcal{E})^n}$, for $n \ge n_0$ and $i=1,2,\ldots$. Since $x_i = \frac{y_i}{\|y_i\|}$, $\|h_n(y_i)\| \le \left(\frac{\|y_i\|}{\tau + 2\mathcal{E}}\right)^n$, for $n \ge n_0$ and $i=1,2,\ldots$. On the other hand, there exists N such that $\|y_i\| < \tau + \mathcal{E}$ for $i \ge N$, because $y_i \to y_0$ and $\|y_0\| = \tau$. Thus we have

$$\overline{\lim}_{n\to\infty} \sqrt[n]{\|h_n(y_i)\|} \leq \frac{\|y_i\|}{\tau + 2\varepsilon} \leq \frac{\tau + \varepsilon}{\tau + 2\varepsilon} < 1$$

for $i \ge N$, contradicting to (5). From this we can easily see that there exist two positive numbers δ and ε such that $\overline{\lim_{n\to\infty}} \sqrt[n]{\|h_n(y)\|} \le 1-\varepsilon$ uniformly for $\|y-y_0\| < \delta$. Hence, $\sum_{n=0}^{\infty} h_n(x)$ is uniformly convergent in $\|y-y_0\| < \delta$ and then $\sum_{n=0}^{\infty} h_n(x)$ is analytic in $\|y-y_i\| < \delta$. This completes the proof.

An example is afforded which is analytic at all points on the boundary of the sphere of analyticity. Put $h_n(x) = \sum\limits_{m=2}^n \left(1-\frac{1}{m}\right)^n x_m^n$, where $x=(x_1,x_2,\ldots)$ is a point of complex- l_2 -spaces, and $h_n(x)$ takes complex numbers as its values. Then the radius of analyticity of $\sum\limits_{n=1}^{\infty} h_n(x)$ is 1 and yet $\sum\limits_{n=2}^{\infty} h_n(x)$ is analytic everywhere on ||x||=1.

The radius of analyticty of $\sum_{n=2}^{\infty} h_n(x)$ is given by

$$\frac{1}{\tau} = \sup_{\|x\|=1} \overline{\lim_{n \to \infty}} \sqrt[n]{\|h_n(x)\|} *$$

Since ||x||=1, $|x_i| \le 1$ for i=1, 2, ... Therefore

$$\frac{1}{\tau} = \sup_{\|x\|^{1}=1} \overline{\lim_{n \to \infty}} \sqrt[n]{\left| \sum_{m=2}^{n} \left(1 - \frac{1}{m}\right)^{n} x_{m}^{n} \right|} \\
\leq \overline{\lim_{n \to \infty}} \sqrt[n]{n \left(1 - \frac{1}{n}\right)^{n}} \\
= 1$$
(6)

Now put $X_m = (0, ..., 0, 1, 0, ...)$, where only *m*-th coordinate is 1 and others are all zero. Since $||X_m|| = 1$, we have

$$\frac{1}{T} \geq \lim_{n \to \infty} \sqrt[n]{\|h_n(X_m)\|} = \lim_{n \to \infty} \sqrt[n]{\left(1 - \frac{1}{m}\right)^n} = 1 - \frac{1}{m},$$

for m=2, 3, ...

Hence from (6), we see that $\tau=1$.

Let *G* be an arbitrary compact set on ||x||=1, then there exists the convergent series of non negative constant $\sum_{n=1}^{\infty} a_n^2 = 1$ such that $\sum_{n=m}^{\infty} |x_n|^2 < \sum_{n=m}^{\infty} a_n^2$ for $x \in G$ and $m=1, 2, 3, \ldots$. If $a_1 = a_2 = a_3 = \cdots = a_{n_0} = 0$ and $a_{n_0+1} \neq 0$, $|x_m|^2 \leq 1$ for $m=1, 2, \ldots, n_0+1$ and $|x_m|^2 < \sum_{n=m}^{\infty} |x_n|^2 < \sum_{n=n_0+2}^{\infty} a_n^2 < 1$ for

^{*)} Isae Shimoda, On power series in abstract spaces, Mathematica Japonicae Vol. 1, No. 2.

 $m \ge n_0 + 2$. Put $\delta = \max\left(1 - \frac{1}{n_0 + 1}, \sqrt{\sum_{n_0 + 2}^{\infty} a_n^2}\right)$, then $\delta < 1$. Thus we have $\|h_n(x)\| = \|\sum_{m=2}^n \left(1 - \frac{1}{m}\right)^n x_m^n\| < \sum_{m=2}^{n_0 + 1} \left(1 - \frac{1}{m}\right)^n + \sum_{m=n_0 + 2}^n |x_m|^n < n\delta^n$. Hence, $\lim_{n \to \infty} \sqrt{\sup_{x \in \sigma} \|h_n(x)\|} \le \delta < 1$. Thus Theorem 1 is applicable, and we see that $\sum_{n=2}^{\infty} h_n(x)$ is analytic everywhere on the boundary of the sphere of analyticity.

Theorem 2. In order that there exists at least a singular point of $\sum_{n=0}^{\infty} h_n(x)$ on the boundary of the sphere of analyticity, it is necessary and sufficient to exist at least a compact set G on ||x||=1 which satisfies the following equality

$$\overline{\lim_{n\to\infty}} \sqrt[n]{\sup_{x\in G} ||h_n(x)||} = \frac{1}{\tau} \tag{7}$$

Proof. If there does not exist a singular point of $\sum_{n=0}^{\infty} h_n(x)$ on $||x|| = \tau$, it must be analytic on $||x|| = \tau$. By appealing to Theorem 1, we have

$$\overline{\lim_{n o\infty}} \sqrt[n]{\sup_{x\in G}} \|h_n(x)\| < rac{1}{ au}$$
 ,

in contradiction to our assumption that $\varlimsup_{n\to\infty}\sqrt[n]{\sup_{x\in\sigma}\|h_n(x)\|}=\frac{1}{\tau}$. The inverse is proved as well.

Similarly we have Theorem 3 from Theorem 1.

Theorem 3. If a power series $\sum_{n=0}^{\infty} h_n(x)$ is analytic at all points on the boundary of its sphere of analyticity $||x|| = \tau$, then we have

$$\overline{\lim}_{n\to\infty} \sqrt[n]{|h_n(x)|} < \frac{1}{x} \tag{8}$$

for an arbitrary point x on ||x||=1.

From Theorem 3, we have following theorem.

Theorem 4. If a point x, which lies on ||x||=1, satisfies the following equality

$$\overline{\lim_{n\to\infty}} \sqrt[n]{\|h_n(x)\|} = \frac{1}{\tau}$$
,

then there exists at least a singular point on $||x||=\tau$.

The condition (8) is necessary for $\sum_{n=0}^{\infty} h_n(x)$ to be analytic on the boundary of its sphere of analyticity, but is not sufficient as the following example shows.

Put $h_n(X)=x^{n-1}y$ in the complex-2-dimensional spaces, then $h_n(X)$ is a homogeneous polynomial of degree n, where X=(x,y). We have

$$\sup_{\|X\|=1} \sqrt[n]{\|h_n(X)\|} = \sup_{\|X\|=1} \overline{\lim_{n \to \infty}} |x|^{\frac{n-1}{n}} |y|^{\frac{1}{n}}$$

$$= \sup_{\|X\|=1} |x|$$

$$= 1$$

That is, the radius of analyticity of $\sum_{n=1}^{\infty} h_n(X)$ is 1. Now let G be a compact set on ||X|| = 1 composed of $X_0 = (1,0)$ and $X_m = \left(\sqrt{1-\frac{1}{m}}, \sqrt{\frac{1}{m}}\right)$, with $m=1,2,\ldots$

Then we have

$$\overline{\lim}_{n\to\infty} \sqrt[n]{\sup}_{X\in\mathcal{G}} ||h_n(X)|| = \overline{\lim}_{n\to\infty} \sqrt[2n]{\left(1-\frac{1}{n}\right)^{n-1}\frac{1}{n}} = 1,$$

because $(1-t)^{n-1}t$ takes its maximum at $t=\frac{1}{n}$ in the interval $0 \le t \le 1$. Thus Theorem 2 is applicable and we see that $\sum_{n=1}^{\infty} h_n(X)$ has a singular point on the boundary of its sphere of analyticity.

On the other hand, we have

$$\frac{\overline{\lim}_{n\to\infty} \sqrt[n]{|h_n(X)|}}{\|h_n(X)\|} = \frac{\overline{\lim}_{n\to\infty}}{\|x|^{\frac{n-1}{n}} |y|^{\frac{1}{n}}} \\
= |x| < 1, \text{ for } y \neq 0 \text{ on } ||X|| = 1, \\
= 0 < 1, \text{ for } y = 0 \text{ on } ||X|| = 1.$$

This shows that (8) is satisfied.

Gakugei Faculty, Tokushima University